Изменить стиль страницы

Однако, нет необходимости проходить весь обратный путь к Ньютону. Можно работать в рамках описания пространства и времени, данного в СТО Эйнштейна в 1905. В соответствии с ней геометрия пространства и времени является той, которую задал Евклид, и её изучали многие из нас в начале высшей школы; однако, пространство и время перемешаны, чтобы приспособиться к двум постулатам Эйнштейна, относительности наблюдателей и постоянства скорости света. Теория не может адаптировать гравитацию, но это правильные установки для максвелловской теории электрических и магнитных полей.

Раз квантовая механика была полностью сформулирована, квантовые теоретики обратили своё внимание на объединение электромагнетизма с квантовой теорией. Поскольку основным феноменом электромагнетизма являются поля, унификация, которая была в итоге получена, названа квантовой теорией поля. А поскольку СТО Эйнштейна является правильным подходом к электромагнетизму, эти теории можно также рассматривать как унификацию квантовой теории и СТО.

Было очень много стимулирующих проблем, чтобы применить квантовую теорию к частицам, поскольку поле имеет величину в каждой точке пространства. Если мы предположим, что пространство непрерывно, — как это декларируется в СТО, — то получим непрерывную бесконечность переменных. В квантовой теории каждая переменная подвержена принципу неопределённости. Одно следствие заключается в том, что чем более точно вы пытаетесь измерить переменную, тем более неконтролируемо она флуктуирует. Бесконечное число неконтролируемо флуктуирующих переменных может легко отбиться от рук. Когда вы задаёте вопросы теории, вы должны быть очень аккуратны, чтобы не получить бесконечные или противоречивые ответы.

Квантовые теоретики уже знали, что для каждой электромагнитной волны имеется квантовая частица, фотон. Потребовалось всего несколько лет, чтобы разработать это в деталях, но в результате получилась просто теория свободно двигающихся фотонов; следующий этап заключался в присоединении заряженных частиц, таких как электроны и протоны, и в описании, как они взаимодействуют с фотонами. Целью была полностью последовательная теория квантовой электродинамики или КЭД. Это было намного более заманчивым. Впервые КЭД была прояснена японским физиком Син-Итиро Томонагой во время Второй мировой войны, но новости не достигли остального мира до 1948 или около того. К этому времени КЭД была ещё дважды независимо сконструирована молодыми американцами Ричардом Фейнманом и Джулианом Швингером.

Когда КЭД была понята, встала задача распространить квантовую теорию поля на сильные и слабые ядерные силы. Это заняло следующую четверть века, и ключевым моментом стало открытие двух новых принципов: Первый определил, что общего имеют электромагнетизм и эти ядерные взаимодействия. Это было названо калибровочным принципом и, как я буду описывать, привело к объединению всех трёх сил. Второй принцип объяснил, почему, хотя и объединённые, эти три силы столь различны. Он был назван спонтанным нарушением симметрии. Вместе эти два принципа формируют краеугольный камень стандартной модели физики частиц. Их точное применение привело к открытию, что частицы, вроде протона и нейтрона, не являются таки элементарными; вместо этого они построены из кварков.

Протон и нейтрон каждый имеют по три кварка, тогда как другие частицы, названные мезонами, имеют два (более точно, кварк и антикварк). Это открытие было сделано в начале 1960х независимо Мюрреем Гелл-Манном в Калтехе и Джорджем Цвейгом в Европейском центре ядерных исследований (ЦЕРН) в Женеве. Вскоре после этого Джеймс Бьоркен в Стэнфордском линейном ускорительном центре (SLAC) и Ричард Фейнман в Калтехе предложили эксперименты, которые, когда их позднее провели в SLAC, подтвердили, что протон и нейтрон на самом деле состоят из трёх кварков каждый.

Открытие кварков было существенным шагом в направлении унификации, поскольку взаимодействие протонов, нейтронов и других частиц было чрезвычайно сложным. Но имелась надежда, что сами силы между кварками могут быть простыми и что наблюдаемые сложности возникают из-за того, что протоны и нейтроны являются составными объектами. Этот вид представлений был уже подтверждён ранее: в то время как силы между молекулами сложны, силы между атомами, которые их составляют, могут быть легко поняты в терминах электромагнетизма. Эта идея заставила теоретиков бросить попытки понять силы между протонами и нейтронами в фундаментальных терминах и, вместо этого, поинтересоваться, как эти силы влияют на кварки. Это редукционизм в действии — старый трюк, при котором законы, управляющие частями, часто проще, чем законы, управляющие целым, — и, в конце концов, он был награждён открытием глубокой общности, которая соединяет две ядерные силы, сильную и слабую, с электромагнетизмом. Все три взаимодействия являются следствиями простого, но мощного калибровочного принципа.

Калибровочный принцип лучше всего понять в терминах того, о чём физики говорят как о симметрии. На простом языке симметрия есть операция, которая не изменяет то, как себя ведёт некоторая вещь по отношению к внешнему миру. Например, если вы вращаете мяч, вы не изменяете его, он всё ещё остаётся сферой. Так что, когда физики говорят о симметрии, они могут иметь в виду операцию в пространстве, вроде вращения, которая не изменяет результат эксперимента. Но они могут также говорить о другом виде изменения, которое мы проделываем над экспериментом, которое не изменяет его результата. Например, представим, что вы берёте две группы котов — скажем, восточных котов и западных котов — и проверяете их способности к подпрыгиванию. Если нет разницы в среднем прыжке, который может сделать кот, тогда мы говорим, что подпрыгивание кота является симметричным относительно операции замены всех ваших восточных котов на западных котов.

Вот другой пример, упрощённый и идеализированный, чтобы сконцентрировать внимание. Рассмотрим эксперимент, в котором пучок протонов ускоряется, а затем направляется на мишень, состоящую из определённого вида ядер. Вы, как экспериментатор, наблюдаете узор, который создают протоны, когда они рассеиваются на ядрах в мишени. Теперь без изменения энергии или мишени вы заменяете протоны на нейтроны. В определённых случаях рисунок рассеяния почти не изменяется. Эксперимент обнаруживает, что вовлечённые в процесс силы действуют одинаково на протоны и нейтроны. Иными словами, акт замены протонов на нейтроны является симметрией сил, действующих между ними и ядрами в мишени.

Знание симметрий хорошая вещь, так как они говорят вам кое-что о вовлечённых силах. В первом примере мы узнали, что сила гравитации, действующая на котов, не зависит от их места происхождения; во втором примере мы узнали, что определённые ядерные силы не могут обнаружить отличие между протонами и нейтронами. Иногда всё, что мы получаем из симметрии, есть такая частичная информация о силах. Но есть специальные ситуации, в которых симметрии полностью определяют силы. Это оказывается именно так для класса сил, именуемых калибровочными силами. Я не хочу докучать вам точными подробностями, как это работает, так как это нам не понадобится.[1] Но факт, что все свойства сил могут быть определены из знания симметрий, является одним из самых важных открытий физики двадцатого столетия. В этой идее смысл калибровочного принципа.[2]

Две вещи о калибровочном принципе нам необходимо знать. Первая, что силы, к которым он приводит, переносятся частицами, названными калибровочными бозонами. Вторая вещь, которую нам надо знать, это что электромагнитные, сильные и слабые силы все оказываются силами такого типа. Калибровочный бозон, который соответствует электромагнитной силе, называется фотон. Калибровочный бозон, который соответствует сильному взаимодействию, удерживающему кварки вместе, называется глюон. Калибровочные бозоны для слабых сил имеют менее интересное название — они называются просто слабые бозоны.

Калибровочный принцип и есть та «красивая математическая идея», отмеченная в главе 3, которая была открыта Германом Вейлем в его неудавшейся попытке по объединению гравитации и электромагнетизма в 1918. Вейль был одним из самых глубоких математиков, когда-либо размышлявших над уравнениями физики, и именно он понял, что структура теории Максвелла полностью объясняется калибровочными силами. В 1950х некоторые люди поинтересовались, а не могут ли и другие теории поля быть сконструированы с использованием калибровочного принципа. Оказалось, что это может быть сделано на основе симметрий, включающих различные виды элементарных частиц. Эти теории теперь называются теориями Янга-Миллса в честь двух их изобретателей.[3] Сначала никто не знал, что делать с этими новыми теориями. Новые силы, которые они описывали, должны были иметь бесконечную область распространения подобно электромагнетизму. Физики знали, что каждая из двух ядерных сил имеет короткую область распространения, так что, казалось, что они не могут быть описаны калибровочной теорией.