Вследствие интерференции световых волн интенсивность возвращенного света имеет для каждого цвета ряд максимумов, которые соответствуют определенным углам наблюдения. Только эти максимумы и может видеть глаз, слабые лучи всех других направлений не дают зрительного восприятия. Но максимумы — от первого к последующим — в каждом цветовом ряду резко слабеют, и различать вторые, третьи и т. д. глазу становится трудно. Поэтому мы обычно видим одну арку, так называемую главную радугу — это сомкнутые полосы, соответствующие первым максимумам всех цветов; она всегда наблюдается под углом примерно 42°.
Изредка в очень чистом небе видна и вторая многоцветная арка — от капель, где свет прошел двойное внутреннее отражение.
Такая интерференционная картина обладает особенностью — стоящий в данном месте наблюдатель видит радугу только от определенной группы частиц. Глаз служит вершиной конуса с углом 42°, а все «избираемые глазом» капли дождя образуют круг в основании конуса.
Первым дал объяснение радуги знаменитый французский философ, математик, физик и физиолог Рене Декарт в 1631 году. Не зная еще явления дифракции, он имел терпение и трудолюбие построить чисто геометрически ход 10 000 лучей, прошедших через каплю. Обнаружилось, что только небольшая группа лучей под номерами от 8500 до 8600 выходит из капли компактным пучком, давая примерно одинаковый угол отклонения, порядка 42°, все остальные расходятся широким веером, то есть рассеиваются.
Земной зритель не может видеть всю окружность, а только ее верхнюю часть. На самолете другие геометрические условия обзора: они позволяют объять глазом весь круг (одно из бесплатных преимуществ авиапассажира, которое Аэрофлот забыл указать в своих проспектах и рекламе).
Радуга принадлежит к «призракам, идущим за тобой». Вы отходите — она перемещается за вами на другой Слой капель, строго соблюдая постоянство угла зрения. Солнечные и лунные дорожки на воде «из той же компании»: помните, они тоже всегда следуют за вами; причины аналогичные — максимум интенсивности света, отраженного от ряби волн, соответствует определенному углу зрения.
Теория Эри мне очень понравилась. Все было так красиво и просто, а главное, подтвердилась моя надежда: теория давала нужную зависимость. Это была связь углового расстояния между соседними максимумами световых интенсивностей (для каждого цвета) и диаметром капли. «Теперь ясно, как ставить опыт,— мне необходима монохроматическая (одноцветная) радуга».
Я работал все дни до 10 вечера, и в неделю мы собрали простую оптическую установку в темной комнате на пятом этаже. Всем не терпелось проверить правильность идеи. «Солнцем» служил межэлектродный промежуток вольтовой дуги, помещенный в фокусе большого конденсора. Красный светофильтр (иных не нашлось) отсекал все другие цвета, потому и требовался очень яркий источник. Под форсункой стояло устройство с улавливателем капель в касторовое масло для контрольного измерения. Все было готово. Мы застыли в полной темноте и тишине ожидания. Сердце у меня колотилось, казалось, о стены комнатки — выйдет или не выйдет этот первый в жизни самостоятельный эксперимент?
— Давай давление воды... держи десять атмосфер, включай рубильник...
На бисерных нитях конуса распыливания небольшой центробежной форсунки повисли бледные, но ясно различимые красные дуги комнатной радуги, разделенные темным промежутком, как и предписывала теория. Мне самодельная радуга показалась прекрасней многоцветной, естественной.
Все были довольны — «момент истины», когда реальность совпадает с предсказанием теории, доставляет какую-то детскую радость. Дескать, фокус удался, хотя вы читали о нем и знаете, как это делается. На другой день я вычислил диаметры капель по формуле радуги, через измеренное угловое расстояние между ее первым и вторым кольцом. Потом мы обработали пробу капель, уловленных в касторовое масло,— данные обоих измерений неплохо согласовывались.
Итак, мои радужные надежды оправдались. Метод давал величину, близкую к среднеарифметической величине диаметров капель в спектре распыливания.
Природа образует радугу не на любой жидкости — все зависит от величины коэффициента преломления. Но керосиновая радуга оказалась в числе «разрешенных». Это уже сулило практический результат, так как керосин применялся в ТРД. (Правда, запротестовали пожарники, требуя для опытов более сложной взрывобезопасной установки.) Конечно, до решения всей капельной проблемы было еще очень далеко. Для понимания физики распыливания и создания расчета смесеобразования требовалось определение всего спектра частиц. Но теперь хоть можно было определять и довольно просто средние значения диаметров капель спектра.
Глава II
ОХОТА ЗА КАПЛЕЙ
В поисках уравнений
Начальник одной из лабораторий ЦАГИ и наш научный руководитель Генрих Наумович Абрамович предложил мне написать статью. Я писал ее в состоянии внутреннего подъема. Мне нравилась радуга, ее теория, мир капель и вообще весь мир. Статья содержала такой перл: «Теория Эри по своей красоте и изяществу может соперничать с явлением, ею описываемым». Мой товарищ по работе инженер Л. А. Клячко, острослов, не без ехидства выдернул эту фразу из текста, как смешную редиску из грядки, и бегал с нею по всем комнатам, потешая сотрудников. Через несколько лет мы поквитались. Отыскался в его статье соответствующий перл: «Кривая концентраций топлива для форсунки имеет двугорбый характер» (автор имел в виду наличие двух максимумов).
Нам, начинающим, повезло на начальников и научных руководителей. Генрих Наумович Абрамович, сам ненамного старше нас, был тогда уже видным исследователем и автором известных работ по теории свободной струи. Много позже на одном из его юбилеев кто-то сострил: «50 лет в струю», вкладывая в эти слова два подтекста. Один говорил о преданности делу — по ассоциации с книгой генерала Игнатьева «50 лет в строю», другой — об умении юбиляра находить нужные, актуальные задачи. Г. Н. Абрамович — один из создателей советской школы аэрогидромеханики. «Генрих», как мы его звали, живой, привлекательный, руководил ненавязчиво, требуя от нас лишь инициативы и самостоятельности. Генрих Наумович просто и наглядно объяснял суть сложных аэродинамических явлений. «Мы здесь рассудим по-нашему, по-плотницки»,— говорил он, поясняя образование ударной волны в сверхзвуковом течении. Его книга «Прикладная газовая динамика» стала настольной для поколений студентов и инженеров.
В то время он разрабатывал теорию центробежной форсунки, давно и широко применявшейся в технике, но пока не подвластной инженерному расчету. А без форсунки нет ракеты, дождевального агрегата, реактивного самолета, котельной установки и еще многого.
Есть в инженерной практике человечества счастливые находки, «вечные» устройства, решающие задачу простейшим и рациональнейшим образом: колесо, болт с гайкой. Таково и сопло Лаваля — канал в виде раструба на выходе реактивного двигателя, где газ разгоняется до сверхзвуковой скорости. В силу привычки мы не удивляемся античной красоте простых и умных геометрических форм. Кстати, древние греки могли бы получить сверхзвуковую струю воздуха, надув бурдюк, выдерживающий давление около двух атмосфер, и подобрав эмпирически сопло — раструб с определенной площадью горловины, меньшей площади выхода.
Центробежная форсунка — младшая сестра в уникальном семействе устройств, которые скупыми средствами, компактно и внешне просто решают сложную техническую задачу. Как пустить жидкость широко расходящимся конусом мелких капель, чтобы полнее насытить некий объем? Проще всего подать ее тангенциально, то есть по касательной к окружности внутрь отрезка цилиндрической трубы, один конец которой закрыт, другой — сужен до малого отверстия (рис. 7). Получится камера закручивания, в ней жидкость пойдет по винтовым линиям. На выходе они «расплетутся», образовав факел, или конус распыливания. У самого корня это не совсем конус, а поверхность более сложной формы: однополостной гиперболоид (рис. 8).