Итак, догадка Г. Н. Абрамовича о существовании максимума расхода подтвердилась экспериментом, экс­перимент помог найти аналогию между гидравлическим прыжком жидкости в открытом русле и режимом мак­симального расхода в форсунке с центробежным дав­лением.

Но, если мы взялись докапываться до самой сути, можно поставить новый вопрос: «А где же всеобщность исходных фундаментальных уравнений, о которых гово­рилось раньше? Они ведь должны предсказать все яв­ления, все опытные факты. Нельзя ли из самих исход­ных уравнений вывести гидравлический прыжок?»

Чтобы ответить на этот вопрос, вновь приходится возвратиться к истории этой проблемы, начиная с того периода, когда практика настойчиво потянула нашу связку «опыт—теория» на новый уровень.

Обычные виды топлива обладают заметной вяз­костью. Новые (для того времени) реактивные двигате­ли космических ракет и больших авиалайнеров, где чис­ло и разнообразие форсунок все возрастали, требовали более точных расчетов. Конструкция самой форсунки усложнялась, она обрастала различными клапанами, изготовлялась по все более высокому классу точности и становилась довольно дорогой деталью. Теория форсун­ки на основе идеальной жидкости сделала свое важное дело, но теперь уже не всегда давала нужную точ­ность.

Исследователи приняли эстафету дальнейшего дви­жения от теории идеальной жидкости к теории вязкой жидкости применительно к процессам в форсунке. Ин­женер Л. А. Клячко проводил испытания центробежной форсунки на топливах разной вязкости. Сначала в фор­сунку подавалось маловязкое топливо — бензин, затем более вязкое — керосин. Первые же опыты, к его удив­лению, показали парадоксальный результат: для керо­сина коэффициент расхода оказался больше, чем для бензина. Клячко сказал готовившему эксперимент ме­ханику:

— Быть этого не может: вязкость больше, а расход возрос. Что-то здесь не так! Вы, наверное, плохо уплот­нили форсунку, и керосин где-то подтекал.

— Форсунка собрана правильно, герметичность я га­рантирую,— с достоинством ответил опытный механик.

Повторный эксперимент (правильность сборки фор­сунки теперь проверяли вместе придирчивый инженер и задетый за живое механик) дал все тот же результат: на керосине коэффициент расхода больше, чем на бен­зине. Провели опыт с еще более вязким топливом — соляровым маслом. Коэффициент расхода опять возрос.

После мучительных раздумий инженер нашел раз­гадку парадоксального явления. Действительно, под влиянием трения уменьшается закрутка потока в каме­ре. И тем сильнее, чем больше вязкость топлива. Момент количества движения уже не сохраняется, как в идеаль­ной жидкости. Та же скорость вращения на границе воз­душного вихря достигается теперь при уменьшенном моменте количества движения, то есть на меньшем ра­диусе r. Короче, трение, слегка «съедая» вращение, при­водит к лучшему заполнению сечения сопла, «накручи­вая» более толстое жидкое кольцо. Кроме того, оказалось, что трение перераспределяет энергию потока: большая доля идет на определяющее расход поступа­тельное движение со скоростью w, меньшая остается вращению. Поэтому с ростом вязкости жидкости коэф­фициент расхода центробежной форсунки возрастает. Согласно новой теории, расход получали больше, а угол распыливания меньше, чем по старой теории. Но опыт и расчет теперь согласовывались значительно лучше.

Форсунка вдобавок ко всем другим своим полезным качествам оказалась еще простым и универсальным на­глядным пособием: кажется, нет такого закона гидро­динамики, который нельзя было бы на ней продемон­стрировать.

Теперь, когда учет вязкости реальной жидкости ри­сует картину, более близкую к фактической, мы можем вернуться к нашему вопросу. Критическое сечение в соп­ле форсунки и в нем бесконечно крутой гидравлический прыжок действительно получаются из уточненной тео­рии, однако полностью до реальной картины она «не до­тягивает». На самом деле явление гидравлического прыжка развивается не в одном сечении, а на некото­ром конечном интервале, так что отвесного прыжка жидкости, бесконечной крутизны нет нигде. Причина нового, более тонкого расхождения теории с реаль­ностью состоит в том, что эффект вязкости хотя и от­ражен теперь, но далеко не полно — только через изме­нение момента количества движения, в то время как структура поля скоростей не учитывалась. Гидравличе­ский же прыжок обычно сопровождается резким изме­нением всей картины потока, отрывом пограничного слоя от стенки, возникновением обратных токов и за­вихрений и принадлежит к классу сложнейших явлений скачкообразной смены одного режима устойчивого тече­ния качественно другим. Среди других гидромеханиче­ских эффектов и этот, конечно, выражается в символах общих уравнений вязкой жидкости (уравнений Навье—Стокса), но вывести его из уравнения пока не удается из-за математических трудностей и неполной ясности относительно влияния на процесс граничных условий.

Наше повествование коротко и упрощенно отразило ход исследования одной из проблем прикладной гидро­механики, связанной с принципом максимума расхода. В теории форсунки существуют и другие подходы, но изложенная методика нашла наибольшее признание в литературе по авиационной, ракетно-космической техни­ке, теплоэнергетике и т. д.

Знания, которые изложены в учебниках, всегда вы­глядят гладкими, логичными, обоснованными. Реаль­ный же путь живой, развивающейся науки изобилует зигзагами, интуитивными догадками, нестрогими ре­зультатами, поскольку интуиция — часто единственный способ перенестись через разрыв, не имеющий пока ло­гического мостика. Даже в наилогичнейшей из всех наук — математике — теоремы обычно сначала высказы­ваются, часто угадываются, а потом доказываются, по­рой долго, порой очень долго, а возможно, не доказыва­ются никогда, как, например, теорема Ферма.

 Рассказ об одной из проблем прикладной гидроме­ханики хочу завершить эпизодом, в котором проявилась поразившая тогда нас интуиция профессора Абрамови­ча, создателя теории центробежной форсунки. Задача выбора формы реактивного сопла — одна из основных в прикладной газодинамике. Наука знает много приме­ров, когда простота конструктивного воплощения идеи требует очень сложной теории для своей реализации. Сейчас задача решается с помощью ЭВМ — борьба идет за малые доли процента реактивной тяги, завися­щей от контура стенок сопла. Оно изготовляется на вы­сокоточных станках с программным управлением. В ту давнюю, «домашинную» эру приближенный расчет был длительным и трудоемким.

 Однажды конструктор развесил чертежи разрабаты­вавшейся тогда серии сопел. Вошел профессор Абрамо­вич. Он бегло осмотрел чертежи, а затем, к нашему не­доумению, стал пристально вглядываться в верхний угол одного из чертежей, хотя там ничего не было. Вы­брав хорошо отточенный карандаш, он быстрым и плав­ным движением нарисовал, не отрывая грифеля от бумаги, лаконично красивую линию контура, потом мол­ча поставил подпись и дату. Всю серию сопел изгото­вили, эксперименты показали: его экземпляр был од­ним из лучших. Потому что много сопел на бумаге и в железе прошло через его руки, много их было рассчита­но, испытано. Концентрированный опыт отложился в интуиции, и в нужный момент она повела острие его карандаша.

Еще один работник ЦАГИ производил на нас, моло­дых, большое впечатление — Георгий Иванович Петров,теперь академик, крупный ученый в области газодина­мики и реактивной техники. Он тогда занимался иссле­дованием устойчивости течения жидкой струи, продол­жением идей предыдущей его работы по распаду вихре­вых слоев. Он любил обсуждать научные вопросы, шагая по коридору или заглядывая мимоходом в комна­ту. У Георгия Ивановича была манера вести несерьез­ный по форме разговор о серьезных и содержательных вещах. Он мог вдруг прервать беседу смехом, окинув всех сияющим взглядом, как бы приглашая порадовать­ся и подивиться вместе с ним неожиданному повороту мысли или красивому математическому решению. Мне­ния его были порой категоричными:

— Халтура в гидродинамике пошла от скороспелых гипотез, надо искать решения в строгой постановке. Вот Тейлор в задаче о вращении газа ничего не побоялся, лихо расправился с определителем бесконечного поряд­ка— и совпадение с опытом. Метод Галеркина — мощ­ный, но применять его надо с головой... Н. попробовал и нарвался...