Изменить стиль страницы

Таким образом, на вопрос, существуют ли в природе тахионы, следует ответить: пока не известно, это предстоит еще выяснить. Можно быть почти уверенным, что тахионов нет в макроскопических областях пространства. Иначе возникли бы парадоксы с причинностью, нарушались бы законы сохранения энергии и импульса. Тахионы и связанные с ними явления могут прятаться только где-нибудь внутри ультрамалых пространственно-временных интервалов, меньших 10-17 сантиметров и 10-27 секунд, там, где противопоставление прошлого будущему теряет смысл.

Но и здесь следует сделать оговорку. В экспериментах и теоретических расчетах, касающихся тахионов, всегда предполагалось, что эти частицы подчиняются формулам Лоренца. С помощью этих формул при вычислениях и при анализе опытов исследователи переходят из одной системы координат в другую. Но кто может поручиться за то, что формулы Лоренца верны и за световым барьером? Это гипотеза, которая, вообще говоря, может оказаться и неверной. А тогда условия причинности могут выглядеть совсем по-другому. По разным соображениям такая возможность кажется маловероятной, но все же в науках никогда не следует торопиться с отрицаниями и запретами.

Когда во время популярной лекции или доклада мне приходится рассказывать о свойствах тахионов, я обычно заканчиваю свой рассказ словами:

— А теперь я продемонстрирую вам сверхсветовую скорость. Не фокус, а самое настоящее сверхсветовое движение.

— С тахионами? — спрашивает кто-нибудь из слушателей.

— Нет, частиц со сверхсветовыми скоростями никто не видел, а вот сверхсветовое движение наблюдать легко. Давайте выключим все лампы, кроме одной, настольной. И вот теперь, поднеся к ней карманное зеркальце, я мазну световым зайчиком по противоположной стене. Если она далеко, а зеркальце поворачивать быстро, то зайчик побежит по стене быстрее света...

Но как же быть при этом с теорией относительности, которая утверждает, что скорость никогда не может перейти через световой барьер? Никакого противоречия с теорией относительности тут нет. Со сверхсветовой скоростью. перемещается эффект, а не вещество. Скорость света — максимальная скорость перемещения материальных тел, а световой зайчик никакого вещества по стене не переносит. Светового барьера, где бы масса и энергия обращались в бесконечность, для него не существует. Подобных сверхсветовых явлений физическая теория не запрещает.

ГЛАВА ДЕСЯТАЯ,

в которой речь идет о пустоте — обыкновенной пустоте, на поверку, впрочем, оказывающейся совсем не обыкновенной и даже не пустотой, а также о попытках ученых создать вещество из одного пустого пространства и, наконец, о мирах с различной пустотой-вакуумом

Кварки, протоны, Вселенная image11.png

Теперь, после того как мы познакомились с кунсткамерой элементарных частиц, обратимся к арене, на которой движутся и взаимодействуют эти частицы,— к пустоте. Казалось бы, о чем тут говорить. Ведь пустота — это когда ничего нет. Но мы уже говорили, что это не так. Пустота — сегодня один из основных объектов физики. Именно она определяет основные свойства нашего мира.

Идея абсолютно пустого пространства — вакуума — возникла несколько тысячелетий назад, как только человек попытался осознать, из чего состоит и откуда произошел окружающий его мир. Следы этой идеи можно найти в самых древних сказаниях и мифах. Кажется, это самое простое, не требующее никаких пояснений понятие — синоним полного «ничто». Что может быть проще? Однако квантовая физика убеждает нас в том, что вакуум — сложнейший объект, можно даже сказать, целый мир. Может быть, это самое сложное из всего, с чем до сих пор приходилось иметь дело науке: некая особая материальная среда, один из видов материи. В каком же смысле можно тогда говорить о пустоте, да и существует ли она в природе? Строго говоря, пустоты нет, а говорить о ней можно в любом смысле, кроме космологического и физического. Например, в житейском. Пустая комната, пустой человек...

Когда мы представляем себе вакуум в виде полной пустоты, вопрос о том, могут ли существовать различные вакуумы, просто не возникает — пустота может быть одна. Все прочее — просто не пустота. Другое дело, если вакуум материален, веществен. Тогда не исключено, что существуют миры с различным вакуумом, и, может быть, наш мир — только один из них. Ведь если все в природе изменяется, пребывает в различных формах, то почему вакуум должен быть исключением?

В действительности проблема вакуума еще сложнее. Некоторые ученые считают, что все материальное содержание мира представляет собой проявление различных свойств пустого, но сложным образом искривленного, скрученного пространства — вакуума.

Итак, с одной стороны, вакуум—это сложная материальная вещественная структура, а с другой, наоборот, оказывается, что само вещество — «искривленная пустота». Так что же такое в конце концов вакуум?

Понятие пустоты — не только объект физической науки, но и один из основных элементов наших представлений о мире в целом. Любая попытка понять его устройство, построить хотя бы приближенную его модель так или иначе связана с этим понятием. На протяжении многих веков оно неоднократно изменялось, отражая сдвиги в мифологическом, религиозном и научном мировоззрениях.

Различные физические и философские школы по-разному относились к понятию пустоты. Знаменитый древнегреческий мыслитель Фалес Милетский, который первым попытался разложить мир на исходные, первичные стихии — элементы, был убежден, что абсолютной пустоты в мире быть не может: любая, даже самая малая его часть заполнена водой, воздухом или еще какой-либо стихией. Демокрит же, напротив, считал пустоту истинной первоосновой мира, на фоне которой как раз и проявляется вся сложность наблюдаемых нами вещей и явлений. Только пустота, учил он, позволяет телам двигаться в пространстве. Если бы все вокруг было чем-то заполнено, то как и куда бы они перемещались? Сжатие тоже требует пустоты.

Пустоты нет, возражал ему Платон. Тела движутся, замещая собой заполняющую все пространство среду. Это подобно вращению колеса: одна его часть замещает другую, и нигде нет разрывов...

Конечно, это были лишь догадки, умозрительные заключения. Возможность практического изучения пустоты появилась много веков спустя. Но шли годы, развивалась техника, и опыт, постепенно убеждал людей в том, что, используя все более и более усовершенствованные приспособления, можно насколько угодно близко подойти к «полной пустоте». Представление о вакууме как о пространстве, из которого «вычерпано» все его материальное содержание, стало казаться самоочевидным, и проблема пустоты на некоторое время перестала волновать умы ученых. Ни у кого не возникало сомнений, что этот вопрос решен окончательно и бесповоротно.

Однако на фундаментальные вопросы, касающиеся свойств и структуры мира, раз и навсегда данного, окончательного ответа не существует. Любой ответ оказывается приближенным и рано или поздно требует дальнейшего уточнения. Более того, представления, казавшиеся ранее взаимоисключающими, на новом, более глубоком уровне знаний часто оказываются тесно связанными, даже выражаются одно через другое. Так случилось и с понятием пустоты. Вопрос о смысле этого понятия превратился в одну из основных физических проблем после того, как были открыты волновые свойства света, и буквально приковал к себе внимание ученых.

Каким образом световая волна бежит в вакууме, если там нет ничего, что могло бы передавать это движение от точки к точке? Не указывает ли сам факт распространения световой волны на то, что вакуум — это все же не пустота, а какая-то особая светоносная субстанция, скажем эфир? Субстанция до того тонкая, что проникает сквозь стенки всех сосудов и ее в отличие от воздуха в принципе нельзя ниоткуда откачать.

Три с половиной столетия назад Рене Декарт, французский математик, физик и философ, писал: «Мы считаем сосуд пустым, когда в нем нет воды, но на самом деле там остается воздух. Если теперь из кажущегося пустым сосуда убрать и воздух, в нем опять что-то должно остаться, но этого «что-то» мы просто не чувствуем». Вот это «что-то» и есть эфир.