Изменить стиль страницы

Никакого предоткрытия двадцатипятивековой давности, разумеется, не было. Атомистические гипотезы тех времен не были, и что еще важнее, не могли быть включены в существовавшую тогда систему естественнонаучного знания. Выражаясь словами современных науковедов, научно-технический потенциал античного мира не позволял совершить такое включение. Поэтому ни Левкипп, ни Демокрит, ни другие античные атомисты не предсказывали и не могли предсказать существования тех атомов и элементарных частиц, которые были открыты в процессе развития науки; в противном случае мы вынуждены были бы приписать им собственные мысли, нарушить правила пользования «призмой времен».

И все-таки факт остается фактом — атомы присутствовали в картине мира древних греков. В чем же здесь дело, нет ли противоречия? Чтобы ответить на этот вопрос, следует обратить внимание вот на какое обстоятельство.

В античной науке была чрезвычайно ярко выражена своеобразная тенденция синтезировать знания, предельно широко охватывать мир единой совокупностью представлений. Конечно, во многих случаях не хватало конкретных данных, не были еще установлены те тысячи и тысячи частных закономерностей, которые по современным представлениям лежат в фундаменте научной картины мира. И все же, несмотря на это, всякий мало-мальски уважающий себя ученый тех времен, можно сказать, стеснялся не ответить на какой-либо вопрос о природе явлений. Научные традиции заставляли мыслителей античности выстраивать грандиозные умозрительные модели мироздания, объясняя все и вся единым и непротиворечивым образом. Ясно, что в такой ситуации нехватка конкретных знаний по тем или иным вопросам должна была заменяться изрядным количеством правдоподобных домыслов. Очень часто красота и общность умозрительных построений играли в дискуссиях гораздо большую роль, нежели скрупулезное сопоставление с опытными данными. Наука, как знание, пропущенное сквозь строжайшие экспериментальные фильтры, наука в ее современном понимании была еще впереди.

Бег за бесконечностью (с илл.) i_011.png

Естественнонаучные знания древних времен, не только добытые опытным путем, но и домысленные, входили в состав прародительницы всех современных наук — философии. Именно философия и пыталась воссоздать единую картину мира; и в этой картине нередко причудливым (для нас!) образом переплетались собственно научные данные, элементы искусства, логические упражнения и практические рецепты. Однако создание пусть не полностью достоверной, но единой копилки разнообразного опыта было совершенно необходимым делом — делом, которое стало одним из важнейших буквально с первых мгновений существования рода человеческого.

Человек, в биологическом отношении такое же примерно существо, как и мы с вами, появился около миллиона лет назад. Появился и стал создавать общее представление об окружающем мире, о своих собратьях, о себе самом. Любое явление, имело оно правильное объяснение или нет, должно было войти в «научную картину» нашего далекого пращура. Ему было ничуть не легче от того, что, скажем, голодный тигр сидит в засаде, повинуясь рефлекторно закрепленному инстинкту охоты, а боевой клич громадной обезьяны связан с зачатками второй сигнальной системы… И, не дожидаясь строгих научных заключений, в картину мира первочеловека входило представление о таинственной, всюду подстерегающей его злой силе — безусловно наивное, но неоценимо полезное представление, заставляющее «держать ухо востро». Ведь за каждую неверно истолкованную частность приходилось, как правило, платить самой дорогой ценой — жизнью.

Таковы, в общих чертах, глубокие корни нашей тяги к намного опережающим время сверхобобщениям. Атомы древних греков — один из замечательных примеров на эту тему. Они являются своеобразными логическими конструкциями, с помощью которых античные философы достраивали свою картину мира, в частности, докомплектовывали свои представления о структуре вещества.

Маршрут № 2. Квантованный мир

Обозначим сразу же цель нашего второго путешествия. В начале 20-х годов французский физик Луи де Бройль сделал удивительное предсказание — любые объекты должны вести себя подобно волне, причем чем меньше масса объекта; тем легче проявляются его волновые свойства. Отсюда, в частности, следовало, что уже доступными к тому времени средствами экспериментаторы могут зарегистрировать волновую картину рассеяния электронов, самых легких среди всех частиц, обладающих массой.

Итак, менее чем через три десятилетия после, казалось бы, четкого доказательства корпускулярной природы элементарных электрических зарядов появилась идея о том, что электроны должны вести себя как типичные волны, наподобие электромагнитных. Более того, гипотеза Л. де Бройля оказалась самым настоящим предоткрытием — она сыграла исключительно важную роль в развитии теории и через несколько лет получила блестящее экспериментальное подтверждение.

Как представляли себе физики элементарную частицу, например, электрон, в начале нашего века? Считалось, что это шарик из какого-го необычного насыщенного электричеством вещества, имеющий размер порядка 10-13 сантиметра. Конечно, экспериментаторы того времени не имели возможности видеть столь малые расстояния непосредственно, однако указанное значение размера могло быть вычислено на основе классической электродинамики, и его назвали «классическим радиусом» электрона. Попытки исследовать поведение вещества в областях пространства с меньшими размерами наталкивались на непреодолимые трудности. Поэтому уже тогда многие физики считали «классический радиус» своеобразным барьером, за которым должны вступить в игру совершенно новые законы природы.

Такая наглядная (отвлекаясь, разумеется, от невообразимо малых масштабов!) модель электрона представлялась неудовлетворительной опять-таки по весьма наглядным причинам. Неприятности начинались уже в тот момент, когда кто-нибудь пытался продвинуться хотя бы на шаг дальше и ответить на вопрос: «Каковы же свойства вещества, из которого состоит элементарный электрический заряд?»

Бег за бесконечностью (с илл.) i_012.png

Предположим, например, что электрон представляет собой упругий шарик, способный сжиматься или расширяться, — вообще, деформироваться под действием внешних сил; нечто вроде теннисного мячика, уменьшенного в тысячи миллиардов раз! Но в таком случае весь опыт развития физики подсказывает, что само «электронное вещество» должно обладать какой-то внутренней структурой. Действительно, откуда берутся замечательные упругие свойства того же самого теннисного мячика? В тот момент, когда он ударяется, например, о землю, молекулы образующего его вещества испытывают некоторую деформацию, но стремятся немедленно возвратиться к исходному состоянию, и мяч резко отскакивает. Иными словами, упругость связана с определенной молекулярной структурой — взаимным расположением молекул — и величиной силы, связывающей эти микрообъекты между собой. Если великий И. Ньютон мог исследовать законы соударения упругих бильярдных шаров, не углубляясь в проблему их атомно-молекулярного строения, и выводить отсюда важные законы механики, то в начале нашего века такая точка зрения уже не могла удовлетворить исследователей. Тем более если речь шла об электроне! Его упругие свойства, несомненно, требовали объяснения, то есть в конечном счете нужны были дополнительные предположения о его внутренней структуре. Таким образом, представление об упругом электроне-шарике неизбежно вело к идеям о существовании каких-то более мелких частиц, из которых построено «электронное вещество». Но ведь и те, более мелкие частицы будут построены из еще более мелких частиц и т. д. и т. п. И нет ничего скучнее такой бесконечной повторяемости одного и того же приема постижения реальности!