Изменить стиль страницы

Замечательных успехов добились и в Европейском центре ядерных исследований, ЦЕРНе (так звучит сокращенное название этого центра, составленное из начальных букв французского выражения). Часть пучка «старого» ускорителя на 30 ГэВ, расположенного вблизи Женевского озера в Швейцарии, отводилась в специально построенное накопительное кольцо, а потом устраивалось почти лобовое столкновение основного и накопленного пучков. Благодаря этому физики смогли заглянуть в мир процессов, которые при использовании обычной неподвижной мишени могли бы наблюдаться только при 2000 ГэВ!

Мы не станем теперь по традиции останавливаться на главных итогах прорыва в мир высоких энергий — этому посвящены следующие главы книги. Отметим лишь следующее.

Появление мощных ускорителей сделало протоны основным инструментом исследований микромира, и в то же время они сами стали наиболее доступным предметом изучения. Поэтому не следует удивляться, что на передний план современной физики высоких энергий выдвинулись определяющие свойства этой замечательной частицы, прежде всего ее способность сильно взаимодействовать с веществом. Следующий этап развития физики элементарных частиц представляет собой преимущественно «адронную эру», которая пришла на смену «электронно-радиационной эре».

Советский физик, член-корреспондент Академии наук СССР Л. Окунь назвал адронами (от греческого «хадрос» — тяжелый) семейство сильновзаимодействующих элементарных частиц, в основном потому, что они обладают большими массами. Впрочем, адроны оправдали свое название и в ином отношении — их описание оказалось, пожалуй, весьма тяжелой проблемой даже для закаленной в электронных, квантовых, релятивистских и многих других сражениях, неустрашимой физики XX века…

Глава четвертая,

повествующая о потопе открытий и способах наскоро соорудить комфортабельный ковчег

Кстати, о призраках… На днях я с огромным интересом прочел книгу одного ученого-психиатра «Записки о встречах с призраками». По этой книжке выходит, что призраки поддаются довольно точному определению.

К. Абэ
Бег за бесконечностью (с илл.) i_024.png
Счастливые «допотопные времена»

Тридцатые годы. Время великих свершений и иллюзий… Посудите сами. Устройство микромира постепенно выстраивалось в не столь уж сложную систему. Есть фотоны, и есть электроны. С помощью фотонов осуществляется взаимодействие между электронами и любыми другими электрическими зарядами. Электроны вместе с ядрами формируют атомы. Ядра состоят из протонов и нейтронов. Все пригоже и целесообразно — ничего лишнего. Правда, имеются две нерешенные задачки — явные пробелы в общей картине.

Первая из них восходит к 1914 году, когда Дж. Чэдвик (будущий открыватель нейтрона) обнаружил странное свойство бета-радиоактивности. Быстрые бета-электроны явно испускались из атомного ядра в результате какого-то внутриядерного катаклизма. Но вместо того, чтобы нести одну постоянную и строго определенную энергию, они создавали целый спектр, притом довольно широкий.

Если бета-электроны с таким непрерывным спектром вылетали непосредственно из ядер, возникала явная энергетическая катастрофа — в каждом акте испускания частицы обладали различными значениями энергии. Н. Бор со свойственной ему смелостью выдвинул гипотезу, что в этих конкретных актах энергия не сохраняется, а закон сохранения следует относить только к среднему значению энергии электрона. Простой путь к спасению великого закона указала немка Л. Мейтнер. В 1922 году она высказала предположение, что электроны «размазываются» по широкому энергетическому интервалу из-за вторичных соударений. Однако к концу 20-х годов ее гипотеза была опровергнута экспериментально.

И все-таки спасение закона сохранения энергии пришло. Пришло в виде письма, которое адресовал участникам небольшой конференции в Тюбингене в декабре 1930 года молодой В. Паули.

В послании из Цюриха выдвигалась гипотеза, будто вместе с бета-электроном ядро испускает новую частицу с очень малой массой и высокой проникающей способностью, причем суммарная энергия бета-электрона и новой частицы остается постоянной, то есть строго сохраняется в каждом акте. В. Паули окрестил «спасителя» нейтроном. Это тяжеловесное название продержалось недолго — лишь до открытия Дж. Чэдвиком настоящего, полноправного нейтрона.

Новая частица понравилась многим, но особые симпатии к ней стал испытывать молодой итальянский физик Э. Ферми. По его предложению она стала называться нейтрино (по-итальянски: нейтрончик), и конфликт между достойными партнерами по ядерному миру был ликвидирован. В 1933 году Э. Ферми построил первую теорию испускания бета-электронов, которая сыграла исключительную роль в развитии представлений о микромире.

Прежде всего в ней была впервые четко зафиксирована идея о том, что в атомном ядре содержатся только протоны и нейтроны, а бета-электроны образуются лишь в результате реакции распада нейтрона. Тем самым было защищено наиболее уязвимое место в протон-нейтронной гипотезе о строении ядра, которая была выдвинута в работах В. Гейзенберга, советского физика-теоретика Д. Иваненко и итальянца Э. Майорана. Эта гипотеза появилась вслед за открытием нейтрона, но некоторое время физики думали, что в ядре наряду с протонами и нейтронами все-таки должны содержаться электроны — те, которые испускаются в виде бета-излучения. Во-вторых, теория Э. Ферми сделала гипотезу В. Паули выдающимся примером предоткрытия. Между предсказанием и прямой регистрацией нейтрино прошло около 35 лет, и некоторые вполне естественные сомнения, возникавшие за столь долгий срок, не идут ни в какое сравнение с редчайшим обстоятельством — на шатком, казалось бы, фундаменте гипотетического нейтрино вырос целый раздел физики элементарных частиц. И именно в этом главная заслуга работы Э. Ферми, где впервые было показано, что бета-радиоактивность обусловлена новыми особыми силами, которые значительно слабее электромагнитных. Благодаря слабому взаимодействию нейтрон превращается в протон, испуская одновременно электрон и антинейтрино.

Эта идея была в значительной степени основана на аналогии с квантовой электродинамикой, которая трактовала взаимодействие как испускание или поглощение фотона электрическими зарядами.

В теории Э. Ферми вместо электрических рассматривались особые «слабые заряды», а аналогом фотона стали пары электрон — нейтрино.

В том, что решающий эксперимент по обнаружению новой частицы произошел не скоро, «виноваты» сами нейтрино, точнее, их фантастическая проникающая способность. Оценка, которой пользовался В. Паули в своем знаменитом письме в Тюбинген, означала, что нейтрино должно свободно прошивать примерно 10-сантиметровую свинцовую пластинку. Впоследствии он любил приводить такой наглядный пример: нейтрино может «не заметить» и свинцовой стены толщиной в 100 световых лет.

Пример, конечно, не столько наглядный, сколько сногсшибательный. Посудите сами: световой год — это расстояние, которое способен пройти свет в пустоте за один земной год. Скорость света составляет примерно 3 ∙ 1010 сантиметров в секунду, а год длится 3,16 ∙ 107 секунд (кстати, удобнейшая приближенная формула для запоминания: π ∙ 107 секунд, где π — обычное школьное «пи»!), то есть один световой год равен 1018 сантиметров, а 100 световых лет соответственно равны 1020 сантиметров. Это на 10(!) порядков превышает радиус Солнца и примерно в три раза радиус ядра нашей Галактики. Отсюда ясно, по крайней мере, одно: нейтрино способно приносить информацию из таких уголков вселенной, откуда ни одна другая частица не выберется «живьем».

Разумеется, о проникающей способности говорят лишь в среднем, то есть каждое отдельное нейтрино может застрять в первом же миллиметре вашего письменного стола, а может и проскочить всю вселенную. Просто оба эти события маловероятны. Рассуждая о гигантской космической преграде, имеют в виду, что вероятность застревания нейтрино при наличии более толстой преграды, скажем, свинцовой стены толщиной более 100 световых лет, весьма велика. В общем, здесь все происходит по правилам квантовой механики: запустив на какую-либо мишень достаточно интенсивный пучок нейтрино, мы вскоре обнаружим редкие события его столкновений с частицами вещества. Но именно в этом и скрывались основные трудности в постановке решающего опыта — нужен был действительно мощный поток нейтрино.