— Но я забыл сказать, что отец погиб первым.
— А какая разница?
— Видите ли, хотелось быть абсолютно точным; отсюда и возникла трудность.
— Но я не вижу никакой трудности, — сказал мистер Олгуд; не видел ее и никто из присутствовавших.
— Хорошо, — объяснил мистер Смусли, — дело вот и чем. Если отец умер первым, то после этого сын уже нс был «младшим». Разве не так?
— Если быть совершенно точным, то да.
— Именно этого они и хотели — быть совершенно точными. Теперь: если он уже не был «младшим», то он п не умер «младшим». Следовательно, было бы неправильным делать такую надпись на его могиле. Понимаете, в чем дело?
— Я сейчас вспомнил, — сказал мистер Филкинс, — одну любопытную вещь. Некий человек написал мне как-то, что, роясь у себя в саду, он откопал две старинные монеты. На одной была надпись «51 г. до н. э.», а на второй — «Георг I». Как я узнал, что он пишет неправду?
— Быть может, вам было известно, что этот человек склонен ко лжи? — спросил Реджинальд.
— Но это не было бы доказательством того, что и в данном случае он лжет.
— Может быть, — предположила Милдред, — вы знали, что в те времена не делали монет?
— Напротив, в оба исторических периода чеканились монеты.
— Были они серебряными или медными? — спросил Билли.
— Мой приятель ничего не писал об этом, и я не вижу, Билли, как бы это могло помочь.
— Понял! — воскликнул Реджинальд. — Надпись «до н. э.» не могла появиться до рождества Христа. Тогда еще не могли предвидеть это событие. Это обозначение было принято лишь позднее, дабы отличить даты, предшествующие тем, которые составляют «нашу эру». Это очень хорошо, но я не могу понять, почему второе утверждение также ложно.
— Реджинальд совершенно прав, — сказал мистер Филкинс, — относительно первой монеты. Вторая же не могла существовать потому, что первый из королей Георгов не носил при жизни имя «Георг I».
— Почему же? — спросила миссис Олгуд. — Он ведь действительно был Георгом I.
— Да, но этого никто не знал, пока не появился Георг II.
— Тогда не было и Георга II, пока на трон не взошел Георг III?
— Нет, не обязательно. Второй Георг стал Георгом II потому, что уже был Георг I.
— Тогда первый Георг был Георгом I потому, что до него не было короля, носившего такое имя..
— Как ты не понимаешь, мама, — сказал Джордж Олгуд. — Ведь мы не называем нашу королеву Викторию Викторией I; но если бы когда-нибудь появилась Виктория II, то ее стали бы так называть.
— Но ведь уже было несколько Георгов, поэтому и он был Георгом I, а несколько Викторий еще не было, значит, два случая не одинаковы.
Присутствующие оставили попытки убедить миссис Олгуд, но читатель, конечно, уже ясно понял, о чем идет речь.
— Есть один вопрос, — сказала Милдред, — который я хотела бы, чтобы вы мне разъяснили. Я привыкла покупать у нашего зеленщика пучки спаржи, каждый 12 дюймов в окружности. Я всегда измеряю их рулеткой, чтобы убедиться, что покупаю полное количество. Однажды у зеленщика не оказалось больших пучков, и он предложил мне взять вместо одного большого два маленьких пучка по 6 дюймов в окружности. «Это одно и то же, — сказала я, — и, конечно, цена останется прежней». Но зеленщик настаивал на том, что два маленьких пучка содержат больше спаржи, чем один большой, и потребовал сверх обычной цены несколько пенсов. Вот я и хочу узнать, кто из нас был прав? Содержат ли два маленьких пучка столько же спаржи, сколько и один большой, или же в них больше спаржи, чем в большом?
— Это старая головоломка, — сказал, рассмеявшись, Реджинальд, — про мешок зерна, который Семпроний занял у Кая, и ваш зеленщик, вероятно, где-то о ней прочитал. Во всяком случае, он вас здорово надул.
— Так они содержали то же количество спаржи?
— Напротив, вы оба были не правы, и вы ему слишком много переплатили. Вы получили лишь половину того количества, которое было в большом пучке, и, следовательно, вам надлежало заплатить лишь половину прежней суммы, а не переплачивать сверх нее.
Да, это было скверное мошенничество. Круг, длина окружности которого вдвое меньше длины окружности другого круга, обладает по сравнению с последним в 4 раза меньшей площадью. Следовательно, 2 маленьких пучка содержали спаржи в 2 раза меньше, чем большой пучок.
— Мистер Филкинс, можете ли вы ответить вот на какой вопрос? — начал Билли. — В соседней деревне живет человек, который каждое утро за завтраком съедает по два яйца.
— Не вижу в этом ничего особенного, — вставил Джордж. — Если бы два яйца съедали по человеку, это было бы интересно.
— Не перебивай мальчика, Джордж, — сказала его мать.
— Ну так вот, — продолжал Билли, — этот человек не покупает, не занимает, не выменивает, не выпрашивает, не ворует и не находит эти яйца. Он не держит кур, и ему не дают эти яйца. Как же он их получает?
— Быть может, он их меняет на что-нибудь еще? — спросила Милдред.
— Это бы значило их выменивать, — ответил Билли.
— Может быть, их ему посылают друзья? — предположила миссис Олгуд.
— Я же сказал, что их ему не дают.
— Я знаю, — сказал Джордж уверенно. — Чужая курица пришла к нему в дом и снесла их.
— Но это значило бы, что он их нашел, разве не так?
— Не взял ли он их напрокат? — спросил Реджинальд.
— Если так, то он не смог бы их вернуть после того, как съел, а это значило бы, что он их украл.
— Может быть, собака зарыта в слове «класть», — сказал мистер Филкинс. — Кладет ли он их на стол?
— Сперва он должен их получить, не так ли? Вопрос был, как он их получает?
— Сдаемся! — сказали все за столом. Тогда маленький Билли перебрался под защиту своей матери, ибо Джордж был способен в подобных случаях на грубые поступки.
— У человека были утки, — крикнул он, — и его слуга собирал яйца каждое утро!
— Но ты сказал, что он не держит домашнюю птицу! — запротестовал Джордж.
— Я не говорил; правда, мистер Филкинс? Я сказал, что он не держит кур.
— Но он их находит, — сказал Реджинальд.
— Нет; я сказал, что их находит его слуга.
— Ну тогда, — вставила Милдред, — его слуга дает их ему.
— Вы же не можете давать человеку его собственность?
Все согласились, что ответ Билли вполне удовлетворителен.
РЕШЕНИЯ
КЕНТЕРБЕРИЙСКИЕ ГОЛОВОЛОМКИ
1. 8 кругов сыра можно переложить на крайний табурет за 33 хода, 10 сыров — за 49 и 21 сыр — за 321 ход. Ниже приведен общий метод решения для случаев с тремя, четырьмя и пятью табуретами.
Составим следующую таблицу, которую можно продолжить для любого нужного нам числа сыров.
Число
Число сыров
табуретов
3
1 2 3 4 5 6 7
Натуральные числа
4
1 3 6 10 15 21 28
Треугольные числа
5
1 4 10 20 35 56 84
Треугольные пирамиды
Число ходов
3
13 7 15 31 63 127
4
1 5 17 49 129 321 769
5
1 7 31 111 351 1023 2815
Первая ее строка содержит натуральные числа. Вторая строка получается сложением чисел первой строки от начала до данного места. Числа третьей строки получаются аналогичным путем из чисел, стоящих во второй строке. Четвертая строка состоит из последовательных степеней числа 2 минус 1. Следующие две строки получаются удвоением числа, стоящего в данной строке, и добавлением к произведению числа из предыдущей строки, которое стоит над тем местом, где выписывается результат. Эта таблица дает одновременно решения для любого числа сыров и трех табуретов, для треугольных чисел и четырех табуретов и для пирамидальных чисел и пяти табуретов. В этих случаях метод решения (складывание сыров друг на друга) всегда только один.