Изменить стиль страницы

Напротив, у животных яйцеклетки и сперматозоиды образуются совершенно независимо от остальных тканей организма. Уже на ранней стадии биологического развития несколько клеток эмбриона обособляются и становятся предшественниками яйцеклеток и сперматозоидов. Начиная с этого времени они в значительной степени отгорожены от воздействия окружающей среды, а потому, как принято считать, не получают никакой информации об эпигенетических приспособлениях в организме.

Как утверждает теория, разделение путей формирования соматических и половых клеток возникло в ходе эволюции именно для того, чтобы приобретенные свойства, которые могут навредить потомству, ни в коем случае не наследовались. Этот феномен называется барьером Вейсмана, то есть носит имя немецкого биолога Августа Вейсмана [12], который высказал эту идею еще в 1883 году. Почти 120 лет спустя — и не только благодаря работе о голодной зиме в Нидерландах — выяснилось, что этот барьер непроницаем не во все периоды жизни. В том, что эпигенетическое наследование возможно и осмысленно, биологов убеждают прежде всего опыты на животных.

Бесплодные мыши и дрозофилы с красными глазами

Около десяти лет назад эпигенетику Ренато Паро удался захватывающий эксперимент. Он вывел мух с красными, а не белыми глазами, и все из-за воздействия теплового удара в эмбриональной фазе развития. В общем-то, ничего необычного в этом не было — всего-навсего элементарная эпигенетика. У мух имелся молекулярный переключатель, который реагировал на жару и активировал ген, отвечающий за цвет глаз. Однако Ренато Паро и его коллега Джакомо Кавалли изолировали красноглазых мух, позволив им размножаться. «Удивительно, что у некоторых потомков также оказались красные глаза, хотя они никогда не подвергались тепловому удару, а генетически все были идентичны», — поясняют ученые.

Но на этом исследователи не остановились и продолжили эксперимент. Раз за разом изолируя красноглазое потомство и допуская спаривание только внутри группы, они смогли проследить эпигенетическое наследование необычного цвета глаз как минимум до шестого поколения. «Тем самым мы впервые на молекулярном уровне показали, что эпигенетические признаки в зародышевой линии животных могут передаваться по наследству следующим поколениям», — вспоминает Ренато Паро, который сегодня возглавляет базельское отделение по биосистемам в Швейцарской высшей технической школе Цюриха.

Вопреки давно сложившемуся представлению оказалось, что внешние воздействия, которые модифицируют эпигенетические переключатели в зародышевой линии, не полностью стираются при формировании сперматозоидов и яйцеклеток. Видимо, в определенных условиях они могут сохраняться и таким образом воздействовать на активность отдельных генов у потомков.

Приблизительно в это же время австралийские эпигенетики Хью Морган и Эмма Уайтлоу из Сиднейского университета проводили опыты с желтыми агути, которыми несколько лет спустя занялся также Рэнди Джертл из Дарема (США). Но их не интересовало действие питания. Скорее, они стремились доказать, что бурые грызуны, у которых по какой бы то ни было причине метилирование ДНК отключало ген желтизны, чаще других давали бурое потомство. Напротив, желтые грызуны, у которых второй код не закрывал ДНК от считывания гена агути, производили на свет преимущественно желтое потомство. Генетические данные у всех зверьков были одинаковы. Ученые сделали вывод, что при переносе на следующее поколение эпигенетическая информация, очевидно, «стирается не полностью».

Между тем Эмма Уайтлоу, работающая теперь в Брисбене (Австралия), твердо убеждена, что люди тоже получают в наследство эпигенетическую информацию. Она уверена: «наследуется нечто большее чем ДНК». И это, между прочим, вполне логично, «поскольку мы целиком наследуем от родителей их хромосомы, а они лишь на пятьдесят процентов состоят из ДНК». Другую половину составляют белки, которые окружают наследственный материал и содержат в своей структуре большую часть второго кода.

Правда, именно в момент слияния яйцеклетки и сперматозоида происходит первая генеральная уборка в клеточном ядре нового организма. Многие гены и группы генов, которые до сих пор были блокированы, в результате этих еще не до конца изученных процессов снова могут открываться для считывания. Другие участки ДНК, напротив, эпигеномом отключаются.

«Сразу после оплодотворения клетка полностью перепрограммируется», — утверждает генетик из Саарбрюккена Йорн Вальтер, детально изучающий этот процесс. В результате оплодотворенная яйцеклетка возвращается в некое первоначальное состояние, из которого новая жизнь может развиваться, не отягощаясь эпигенетическим влиянием родителей. «Перепрограммирование важно, чтобы клетка правильно прошла первые шаги своего развития», — говорит Йорн Вальтер. Например, у млекопитающих лишь идеально перепрограммированная яйцеклетка формирует как эмбрион, так и плаценту, которая питает новую жизнь. И только такая яйцеклетка в ходе эмбрионального развития может превращаться в любую клетку будущего организма и таким образом участвовать в формировании разнообразных органов.

До сих пор ученые полагали, что эпигенетическая генеральная уборка дает стопроцентный результат и не оставляет следов клеточной памяти родителей. Но уверенности в этом становится все меньше.

Наоборот, с недавних пор все отчетливее формируется представление, что животные, по крайней мере теоретически, могут передавать по наследству механизмы приспособления к окружающей среде. Сначала речь шла о модификациях гистонов и метилировании ДНК, а в 2006 году это было доказано также и для микро-РНК. Мину Рассулзадеган из Университета Ниццы вместе со своими коллегами открыла, что у некоторых мышей лапки и кончик хвоста только потому бывают белыми, что отцы через сперматозоиды передали им большее количество малых РНК. В некоторых клетках эти биомолекулы с помощью РНК-интерференции отключают тот ген, который отвечает за нормальную окраску.

И наконец, работы исследовательской группы под руководством американского молекулярного биолога Майкла Скиннера из Университета штата Вашингтон (Пулман, США) поспособствовали тому, что все больше ученых верят в существование эпигенетического наследования. Скиннер и его коллега Мэтью Энуэй подвергли беременных крыс воздействию пестицида винколозолина и проследили, какое действие это оказало на потомство. Вещество, предназначенное для уничтожения грибков, разрушает мужские половые гормоны у млекопитающих, а также канцерогенно и вредно для почек. Поэтому в некоторых странах, включая Германию, оно запрещено.

Первые результаты не стали для исследователей неожиданностью: крысята мужского пола оказались значительно мельче нормальных особей, хотя сохраняли способность к оплодотворению. Очевидно, разрушающий гормоны яд затормозил формирование их половых клеток в критический период развития. Гораздо большее удивление вызвал у научного сообщества следующий результат: было установлено, что «эти последствия передавались по мужской линии почти всем самцам последующих поколений». А поколений было все-таки три.

Следовательно, яд влиял на плодовитость праправнуков тех крыс, которые были отравлены в период беременности. И это при том, что сам генетический код животных затронут не был. Майкл Скиннер и его коллеги обнаружили в клетках зародышевой линии модифицированную модель метилирований ДНК.

Ученые делают вывод: здесь внешний фактор обладает потенциалом перепрограммирования зародышевой линии млекопитающего. Тем самым он способствует развитию болезни, которая передается последующим поколениям эпигенетическим путем. Это имеет далеко идущие последствия как для эволюционной биологии, так и для нашего представления о наследуемости определенных болезней.

Новейшие исследования Майкла Скиннера показали, что наследственная эпимутация сказывается даже на привлекательности для противоположного пола. По поведению потенциальных партнеров самки угадывали болезнетворное отклонение в их втором коде и спаривались преимущественно со здоровыми в эпигенетическом отношении самцами. Скиннер склонен считать, что этот результат можно перенести и на людей: «Если ваш прадедушка подвергся воздействию вредных веществ из окружающей среды, это скажется даже через поколение, и ваша сексуальная привлекательность будет снижена». Дэвид Крюс, один из участников эксперимента, делает более взвешенный вывод: прежде всего эта работа демонстрирует, что унаследованные эпигенетические изменения могут сказаться также и на поведении животных. «Тем самым эпигенетика добралась до мозга», — заключает он.

вернуться

12

Фридрих Леопольд Август Вейсман (1834–1914) — немецкий биолог и теоретик эволюционного учения. (Прим. ред.).