Трудности доказательства истины больше всего связаны с ценностью или значимостью различий сравниваемых моделей, которые определяются активностью критериев-чувств, имеющих связи с моделью. Универсальный интеллект всегда многокритериальный, но соотношение критериев различно у разных интеллектов в зависимости от исходной «закладки» и от самоорганизации в процессе деятельности.
6. Практика всегда критерий истины. Но для простых систем применение этого критерия достаточно просто, для сложных — не так. Практика проверки моделей сложных систем — это использование их для управления. Заведомо ложное обнаруживается быстро — и модель отпадает. Но я уже говорил, что для сложной системы можно создать бесконечное множество моделей. Одни будут более, другие — менее удачны. Преимущества должны выявиться при управлении с их помощью. Здесь и начинаются трудности.
Каковы критерии эффективности управления? Если не гибель, то жизнь, но какая? Сложные системы имеют много программ, идущих параллельно, их соотношение может меняться, и как доказать, какая «жизнь» лучше? И кому доказывать? Преимущества одной модели нужно доказывать приверженцам другой модели, у которых — свои представления о значимости тех или иных проявлений жизни, критериев эффективности управления системой. Если к этому добавить, что самые сложные системы изменяются и развиваются очень медленно и поэтому результаты управления могут сказаться поздно, то вопрос о доказательствах истины становится еще более запутанным.
7. Невозможно точно моделировать сложные системы «типа живых», потому что они (сложные системы) связаны как с вышестоящими, так и с нижестоящими. Поскольку им присуща самоорганизация, то динамику можно представить только с учетом воздействий со стороны внешней среды («сверху») и специфики (тоже самоорганизации) элементов данной системы.
Для иллюстрации трудностей можно привести несколько примеров зависимостей, без учета которых нельзя познать связанные друг с другом объекты:
Если сделать подстановки, то получим еще более сложные зависимости:
Для познания истины, т. е. адекватного моделирования, прежде всего нужны методы исследования объекта: определение структуры и функции как целого, так и частей — все более и более мелких. Для каждого уровня структурной сложности нужны свои методы исследования, которые в основном сводятся к выделению и измерению комплекса сигналов.
В методах исследования долго господствовал аналитический подход: разложение на части и их наблюдение. Однако скоро выявилась недостаточность чистого анализа: важен не только сигнал с одного элемента, но и его отношение с другими. Для этого уже нужен синтез: исследование одновременно многих элементов, чтобы выявить их зависимости. При этом требуется не только многоканальная измерительная техника, но и гипотеза — что измерять, поскольку в любой сложной системе имеется такое количество структурных частей разной иерархии сложности, что охватить их измерениями немыслимо.
Отсюда требование: выбрать важные «точки» для наблюдения, которые дают возможность получить наиболее ценную информацию, позволяющую со значительной вероятностью судить о функциях остальных частей системы — как «вверх», так и «вниз». Такие «точки» можно предположить, если есть обобщенная модель системы. Информация, получаемая с них, может быть достаточно достоверна, поскольку все сложные системы саморегулируются и, следовательно, существует корреляция между многими показателями. Правда, это не распространяется на влияния «сверху» — от высших по иерархии систем. Если зависимость от них велика, то наблюдение данной системы недостаточно даже для суждения о ней.
Не менее, если не более, трудна проблема создания самих моделей сложных систем. «Внутренние» модели универсального интеллекта (например, в мозге человека) не могут стать ни объективными, ни достаточными по полноте. Поэтому продвижение по пути познания возможно только при создании «внешних» моделей, поскольку в процессе их построения можно уменьшить недостатки «внутренних» моделей. Можно создать одинаково подробную структуру, уменьшить субъективность и сделать модель количественной, без чего ее нельзя рассматривать достаточной для управления и даже для познания. Это достигается повторным собственным восприятием модели и коллективным творчеством.
Однако далеко не всякая «внешняя» модель может отвечать этим высоким требованиям. Для этого нужны соответствующий код и технология построения модели.
Первыми и универсальными «внешними» моделями были устные рассказы, которые создавались первобытными бесписьменными людьми, хранились в памяти рода и подвергались непрерывным изменениям. Разумеется, ни о каких объективности, количественности и полноте их не могло быть и речи. Картина мира представляла смесь действительного и вымышленного, которое, тем не менее, воспринималось как истина в силу авторитета источников информации — старейшин (наиболее опытных, знающих людей).
Изобретение счета, рисования и письменности, наряду с совершенствованием наблюдений, несколько увеличило полноту и объективность моделей. По крайней мере, в части легко наблюдаемых предметов. То же, что находилось за пределами простого наблюдения и требовало гипотез, по-прежнему было лишено достоверности.
Почти такое же положение остается и до сего времени, если говорить о сложных системах «типа живых».
В связи с развитием техники измерений и исследований появилось много количественных сведений о разных объектах. Параллельно развивалась математика, позволившая манипулировать этими сведениями. В результате простые системы физической и химической природы получили свои количественные модели, отвечающие требованиям объективности и полноты. К сожалению, количество переменных в сложных системах настолько велико, а их взаимная зависимость так тесна, что чистый анализ, хотя и дает цифры, но их ценность невелика, поскольку все зависимости лишь вероятностные. Даже если одновременно регистрируется довольно много (десятки и даже сотни) переменных, то и тогда их компоновка затруднительна, если нет правильной гипотезы о структуре и функции системы. В результате этого во всех науках о сложных системах господствуют словесные описательные модели, дополненные большим или меньшим количеством структурных схем и вероятностных зависимостей между частными функциями. Разумеется, со временем эти модели стали гораздо более объективными, избавились от прямых фантазий (мифов), но многие основные их положения еще опираются больше на авторитеты, чем на строгие факты.
Чем выше стоит система в иерархии сложности, тем меньше достоверность моделей. Впрочем, эта зависимость не прямая. Внутриклеточные механизмы менее поняты, чем отношения между органами. Это связано не только со сложностью (число и отношения между элементами), но и с трудностью исследования ввиду миниатюрности объекта.
Великие ученые давно поняли необходимость количественных моделей. Об этом писали К. Маркс, И.П. Павлов и многие другие. Теперь это знают все, поэтому так увлекаются измерениями. Без цифр, статистик, схем и графиков научная статья считается неполноценной. Однако не следует поддаваться самообману. В любой сложной системе «типа живых» — тысячи и даже миллионы взаимозависимостей, многие можно измерять по одной, по паре, по три и даже более. Соответственно можно получить массу цифр и формул. К сожалению, этого еще недостаточно для построения более или менее полной модели. Ведь нужно увязать их в систему, составить математическую модель. Но именно для этого и не хватает данных, потому что исследования ведутся выборочно, выясняется влияние одной переменной на другую без учета состояния всего множества остальных факторов. Результатом этого является неполнота моделей: словесные гипотезы с частными количественными иллюстрациями. Естественно, что их доказательность слаба.