Изменить стиль страницы

Что же касается самой МКС и возможности с ее помощью заметного продвижения в области оправданного участия людей в работах на орбите, то складывается впечатление, что такой задачи разработчики МКС перед собой и не ставили. Опять восстановление престижа США в области орбитальных станций? Получение опыта? В чем же дело? Почему мы потерпели неудачу в работах по станции «Мир»?

Тут имеют решающее значение три вещи. Во-первых, надо как можно четче уяснить, что же мы хотим сделать на данной орбитальной станции. Во-вторых, определить главную функцию человека, которую он будет осуществлять на орбите и которая оправдывала бы его пребывание на станции. И в-третьих, оснастить станцию наиболее эффективными инструментами для исследований и экспериментов.

Начнем с последнего тезиса. Когда мы работали над очередным проектом, то попытались напрямую договориться с представителями Института Макса Планка в Германии об установке на нашей станции рентгеновского телескопа с зеркалом косого падения с диаметром объектива около 600 миллиметров, разработка которого в то время у них уже далеко продвинулась. Ничего не вышло: нам нанесли удар в спину разработчики рентгеновского телескопа из нашего Института космических исследований. Их представители встретились, кажется, на какой-то конференции в Австрии с разработчиком из Института Макса Планка и упросили его отказаться от переговоров с нами: «Если вы согласитесь поставить ваш телескоп на станцию, телескоп ИКИ не будет поставлен. Имейте совесть!» Дело кончилось как обычно: рентгеновский телескоп ИКИ в полете не работал, а рентгеновский телескоп с зеркалом косого падения (с увеличенным диаметром, кстати, разработанный в том же институте) был выведен на орбиту только в 1999 году на «Шаттле».

Никаких компромиссов в деле оснащения станции наиболее эффективными инструментами быть не должно! Но предположим, нам удалось бы оснастить станцию хорошими, эффективными инструментами. Добились бы мы успеха? Пожалуй, все равно нет. Дело в упоминавшемся уже временном коэффициенте полезного действия работы аппаратуры и человека. А что может делать на станции человек?

Приступая к разработке космических кораблей, мы исходили из того, что, создавая их, пролагаем путь человечеству в новый мир необъятных размеров, который ему еще только предстоит осваивать, который предоставит людям новые возможности. Какие возможности появятся для работы человека в этом новом мире, тогда было не ясно. Но они должны были быть. В какой-то степени это подтвердилось в дальнейшем.

Правда, возникал вопрос: а сможет ли человек воспользоваться этими возможностями, находясь и работая непосредственно в космическом пространстве? Сможет ли он жить и работать в условиях невесомости, в условиях орбитального или межпланетных полетов?

В условиях космического полета радиация является вполне реальной опасностью, если корабль находится на высоте более 400 километров, за радиационными поясами. Источник опасности — высокая концентрация протонов и электронов в радиационных поясах на высотах от 400 до примерно 20 000 километров, вспышки на Солнце, при которых в сторону Земли летят облака электронов, и частицы высоких энергий в галактическом космическом излучении — эта опасность может возникнуть только при осуществлении межпланетных полетов. Если проходить радиационные пояса с космическими скоростями, как это было у американцев во время полетов к Луне, то за счет краткости пребывания корабля в радиационных поясах опасности нет.

Конечно, крайне нежелателен пробой стенки микрометеорами, но серьезной опасности он не представляет. Заметной опасностью является встреча с частицей, способной пробить стенку корабля. При этом диаметр отверстия будет примерно равен толщине стенки и, несмотря на большую скорость истечения воздуха из внутреннего объема станции, давление в ней начнет падать очень медленно, и можно спокойно принять меры по спасению. Другое дело — встреча с каким-нибудь крупным предметом, оставшимся на орбите от ракет или аппаратов. Вероятность столкновения с такими предметами сейчас пока очень небольшая и не выходит за пределы допустимого профессионального риска. Но необходимо все-таки заключить международное соглашение, запрещающее оставлять на земных орбитах на длительное время элементы конструкции ракет и аппаратов, которые, постепенно накапливаясь, могут стать вполне реальной опасностью для полетов.

Проблема снижения содержания кальция в костной ткани и, соответственно, уменьшение ее плотности во время пребывания в невесомости, ослабление мощности сердечной мышцы из-за заметного снижения нагрузки на нее в условиях невесомости, вредные газовые примеси в атмосфере орбитальных станций, высокое нервное напряжение в течение длительного времени — вполне реальные опасности пребывания человека в космических полетах. Они прогнозировались и подтверждались. Для этого всегда принимались профилактические меры: регулярные физические нагрузки на бегущей дорожке, велоэргометре, газовые фильтры, дни отдыха и разгрузки и тому подобное. Похоже, что существует и другая опасность, связанная с выполнением длительных полетов. Она проявляется в явном нежелании уже летавших космонавтов участвовать в полетах большой длительности (полгода, год и более). Почему? Пока мы этого не поняли, но надо постараться понять и принять меры.

Ну и конечно, всегда в полете существует вполне реальная опасность аварии на участке выведения на орбиту, при сближении и стыковке со станцией, во время работы на орбите и при возвращении на Землю.

Такие опасности, как вакуум, радиация и метеоры были более или менее осознаваемы, мы понимали, что эти препятствия преодолеть можно инженерными методами. Но сможет ли человеческий организм адаптироваться к условиям невесомости? Априорная убежденность в том, что человек может жить и работать при отсутствии силы тяжести, плавая внутри объемов кораблей и станций, была. Она принималась как религиозные представления. Но на самом деле эта убежденность базировалась только на одном, совершенно не убедительном доводе: если человек не сможет жить в условиях невесомости, то зачем нам за это дело браться? Что такое соображение не является доказательством, было очевидно, и потому с самого начала нужно было разобраться в возможности человека жить и работать в невесомости, попытаться определить, нет ли здесь каких-нибудь подводных камней, нет ли каких-то ограничений, касающихся, например, длительности полета, возраста, состояния здоровья. И мы постепенно наращивали длительность полета, не провозглашая эту задачу одной из важнейших целей. Длительность непрерывного полета на кораблях и орбитальных станциях была постепенно доведена до четырехсот с лишним дней, хотя мы и натолкнулись на дружное и упорное сопротивление. И пока эти эксперименты с длительными полетами, которые по существу были опасными (ведь у нас не было никакой информации по проблеме «организм — невесомость»), проходили благополучно. И фактически, отправляя космонавтов в каждый длительный полет, особенно увеличивая в очередной раз длительность полета, мы рисковали жизнью или здоровьем космонавтов, доверивших нам себя (не говоря уже о риске, связанном с возможными авариями).

Это понимали все участники работ: и врачи, и инженеры, участвовавшие в управлении полетом, и космонавты, и начальство. Во всяком случае, думаю, что понимали, хотя об этом впрямую не говорилось. Можно понять начальство: «Вы толкаете нас на риск, а отвечать-то придется нам!» Можно понять руководителей полета: они несли ответственность за благополучный исход. Можно понять врачей и инженеров: они тоже несли ответственность за благополучное окончание каждого полета. И космонавтов тоже можно понять — ведь речь шла об их жизни, об их здоровье. И все-таки удивляло дружное, иногда просто ожесточенное сопротивление.

Один из наших известных космонавтов говорил мне, что увеличивать время полета свыше пяти суток нельзя: «Это просто невозможно вынести! Речь идет о выживании!» Он летал именно на такой срок. А ведь пять суток — это как раз период адаптации к условиям невесомости, который большинство переносит достаточно болезненно. Но как выяснилось впоследствии, организм человека за несколько суток привыкает к ощущению постоянного падения и укачивания при любых движениях и перемещениях. Знаменитый летчик-испытатель и первый лунный человек Армстронг рассказывал, что и он испытывал эти неприятные ощущения. В начале полета при активной деятельности и перемещениях он начинал чувствовать себя плохо. Тогда он усаживался в кресло, смотрел в иллюминатор, и все постепенно приходило в норму. Это вполне объяснимо. Вестибулярный аппарат выдавал в мозг, в компьютер человека, сигнал тревоги: падение, качка. А глаза, тело (когда он усаживался в кресло) тоже посылали сигнал: все на месте, никакого падения, никакой качки. И человеческий компьютер привыкал не принимать во внимание этот сигнал, отключать его от сознания. Время привыкания и есть период адаптации к условиям невесомости. И ничего тревожного в плохом самочувствии в этот период нет. Это поняли и космонавты. Но по-прежнему активно возражали.