Изменить стиль страницы

Для вывода на орбиту КК массой до 3,8 т использовалась ракета «Титан-2» со стартовой массой 148,5 т, которая была доработана для пилотируемых полетов (увеличена надежность систем управления и электропитания и введены средства обнаружения неисправностей для САС). При отработке было произведено два беспилотных запуска РН с кораблем «Джемини».

Работы по модернизации ракеты «Титан-2» выполнялись фирмой «Мартин Мариетта». Головным подрядчиком НАСА по разработке и изготовлению корабля стала известная авиационная фирма «Макдонелл Дуглас». Центр пилотируемых полетов в Хьюстоне был также ответственным за подготовку космонавтов и управление их полетом.

Активное участие авиационных специалистов в разработке КК наложило определенный отпечаток на конструкцию корабля и его отдельных систем. Сама компоновка корабля напоминала часть фюзеляжа самолета с двухместной кабиной. Космонавты размещались в креслах, перед которыми были установлены два иллюминатора и пульт с органами управления и контроля. В левом кресле находился командир, который управлял ориентацией и поступательными перемещениями КК при маневрах и стыковке, контролировал работу РН, мог включать САС, а также управлял другими системами. Второй член экипажа обеспечивал навигацию, общение с бортовой вычислительной машиной, контролировал электроснабжение и другие системы.

Многие операции могли выполняться обоими космонавтами. Например, это касалось управления ориентацией при помощи ручки, находящейся между ними. У каждого космонавта имелась также ручка для катапультирования кресел. Причем катапультирование кресел предусматривалось при срабатывании САС на старте (осуществлялся увод на расстояние 300 м в сторону от РН и на 140 м вверх), на начальном участке полета (до высоты 21 км), а также в случае необходимости и на конечном участке приземления.

Кроме пульта в кабине были установлены только системы, необходимые для жизни и работы космонавтов (элементы системы жизнеобеспечения включали в себя два дополнительных баллона с кислородом и др.). Все остальные системы размещались или в других частях капсулы (приборной секции, секции локатора, РСУ и т. д.), или в приборно-агрегатном отсеке. Последний включал в себя отдельные модули (двигательный, баков, терморегулирования, электронного оборудования, электропитания и др.). По сравнению с КК «Меркурий» такое модульное построение значительно улучшало конструкцию, делало ее более технологичной, а главное — намного упрощало устранение неисправностей.

Вследствие увеличения состава экипажа и продолжительности полета по сравнению с КК «Меркурий» была разработана с целью экономии массы система хранения и подачи кислорода в жидком состоянии (эта система размещалась в приборно-агрегатном отсеке). Как уже отмечалось, на американских КК использовалась система жизнеобеспечения, предусматривающая постоянное пополнение кислорода. Это потребовало значительных запасов кислорода на борту, а для хранения газов под высоким давлением (300–500 атм) нужны были баллоны массой в 2–2,5 раза превышавшей массу самого кислорода.

Созданная для КК «Джемини» система с жидким кислородом, охлажденным до 155 К и находящимся под давлением 5 атм, и с устройством для его газификации явилась непростой конструкцией. С одной стороны, требовалась хорошая термоизоляция баллонов, а с другой, для получения газообразного кислорода необходимо было иметь регулируемый подогреватель. При помощи регулятора поддерживалось заданное внутреннее давление в баллонах, при этом требовалось непрерывно измерять количество расходуемого кислорода в жидкой фазе. Необходимость надежного функционирования в условиях невесомости усложняла как саму техническую задачу, так и отработку системы в наземных условиях.

Предварительный подогрев кислорода осуществлялся при помощи единой системы терморегулирования, основой которой был жидкостный контур с теплоносителем. Теплоноситель, циркулировавший в этом контуре, подводился ко всем элементам, к которым необходим был подвод тепла или от которых тепло требовалось отводить (например, от плит с приборами, потреблявшими значительную мощность). Охлаждение теплоносителя проводилось по-прежнему в наружных радиаторах, излучающей поверхностью которых являлась внешняя оболочка приборно-агрегатного отсека.

Хранение кислорода и водорода в жидком состоянии требовалось также для топливных элементов (в отечественной технике их чаще называют электрохимическими генераторами). Они составили основу системы электропитания. Источники электроэнергии, относящиеся к рассматриваемому типу, наиболее предпочтительны при средней продолжительности полета (1–2 недели). Топливные элементы эффективны, имеют высокий КПД, не накладывают ограничений на ориентацию КК (как это обычно требуется при использовании неподвижных солнечных батарей).

Дополнительно на КК «Джемини» было установлено несколько серебряно-цинковых аккумуляторов (четыре основные батареи и отдельная батарея для пиросредств в приборно-агрегатном отсеке) и три батареи в отсеке экипажа, а также статический преобразователь постоянного напряжения в переменное мощностью до 750 Вт. Общее количество аккумуляторов, которое можно было установить на этот КК, обеспечивало его полет до 4 сут (при среднем потреблении энергии 500 Вт).

При первых четырех полетах КК «Джемини» их продолжительность ограничивалась прежде всего запасом электроэнергии, что вызывалось значительной задержкой в отработке топливных элементов. Отказы происходили также и в полете с топливными элементами.

В топливных элементах происходит соединение водорода с кислородом, поэтому в качестве побочного продукта образуется вода. Вода эта в принципе вполне пригодна для питья и тем более для технических целей (для применения в дополнительном холодильнике системы терморегулирования испарительного типа).

В КК «Джемини» увеличились и усложнились задачи системы управления движением по сравнению с той же системой на КК «Меркурий». Первостепенной, жизненно важной задачей по-прежнему оставалась ориентация перед включением тормозной двигательной установки для схода с орбиты. Однако чтобы произвести сближение и стыковку, требовалось совершать значительно более сложные и точные маневры.

Например, для изменения параметров орбиты требовалось сначала очень точно сориентироваться в строго определенное время и на определенный интервал времени включить двигатели КК. На заключительном этапе сближения (причаливании) управление поступательным перемещением во всех направлениях нужно было обеспечивать без изменения ориентации КК.

Навигационные задачи решались при помощи гиростабилизированной платформы, датчиков инфракрасной вертикали, приборов визуальных наблюдений и бортовой цифровой вычислительной машины, а также с использованием передачи данных траекторных измерений с Земли. Можно было применять различные сочетания этих средств, что увеличивало надежность и гибкость в работе. Применение в гироплатформе четвертой (избыточной) рамки подвеса снимало ограничение по допустимым углам разворота КК в ряде режимов работы, а также упрощало управление. Позднее, при подготовке и полетах КК «Аполлон», на котором использовалась гироплатформа с тремя карданными рамками, американские космонавты с сожалением вспоминали о больших возможностях и удобствах системы с четырехрамочной гироплатформой.

В качестве исполнительных органов системы ориентации и управления поступательными перемещениями была применена реактивная система управления, которая состояла из нескольких групп двигателей, размещенных в обоих отсеках КК. Первая группа из 16 таких двигателей тягой 110 Н каждый была выполнена в виде единого модуля, включавшего в себя две автономные подсистемы. Все это размещалось в передней части капсулы и предназначалось в основном для управления КК при спуске.

Остальные 16 двигателей реактивной системы управления, скомпонованные в виде четырех блоков, находились в приборно-агрегатном отсеке (6 вблизи центра масс КК, 10 в хвостовой части). Два из этих двигателей (тягой по 377 Н) и еще два (тягой по 440 Н) использовались для коррекции орбиты, четыре двигателя тягой по 440 Н — для поступательных перемещений КК и восемь двигателей тягой по 110 Н — для ориентации КК.