Изменить стиль страницы

Программа «Аполлон»

Под этим названием в 60-х годах в США проводился огромный комплекс работ, основной задачей которого была высадка человека на Луну. Выполнение программы, престижное значение которой занимало далеко не последнее место, потребовало израсходования около 25 млрд. долл. В целом, однако, это достижение было итогом развития всей мировой науки и техники. Недаром американские космонавты Н. Армстронг и Э. Олдрин, первыми вступившие на Луну, оставили там вымпелы в честь первого космонавта планеты Ю. А. Гагарина и других советских и американских космонавтов, отдавших свою жизнь за дело освоения космоса.

Для осуществления всех предыдущих программ в США в качестве РН в той или иной мере использовались созданные ранее баллистические ракеты. Для вывода на трассу к Луне космического комплекса массой немногим меньше 50 т пришлось создать гигантскую трехступенчатую РН «Сатурн-5» длиной 110,7 м и стартовой массой (вместе с КК «Аполлон-11») 2905 т при тяге двигателей первой ступени 33 800 кН. Это само по себе представляло собой сложную задачу и требовало длительного времени, поэтому она выполнялась в несколько этапов. Вначале были созданы РН «Сатурн-1» и «Сатурн-1Би», которые применялись для отработочных полетов на околоземных орбитах.

Но даже такой огромной РН, как «Сатурн-5», оказалось недостаточно для прямого полета КК на Луну и возвращения его на Землю. Чтобы уложиться в «полезный груз», определяемый РН, специалисты рассмотрели несколько возможных схем полета со стыковкой в космосе. В принятом варианте космический комплекс состоял из двух частей: основного блока КК «Аполлон» (с маршевой двигательной установкой) массой 28,8 т и двухступенчатого лунного модуля (состоявшего из посадочной и взлетной ступеней) массой 15 т.

После повторного запуска третьей ступени РН «Сатурн-5» на орбите искусственного спутника Земли скорость всего космического комплекса доводилась до 10,83 км/с, достаточной для полета к Луне. Маршевый двигатель основного блока КК «Аполлон» включался в полете многократно. Наибольшее продолжительное время (около 6 мин) он работал для того, чтобы обеспечить выход КК с тремя космонавтами на борту на орбиту искусственного спутника Луны. Основной блок КК с одним космонавтом оставался на такой орбите, а на Луну спускался лунный модуль с двумя космонавтами. Для этого использовалась двигательная установка посадочной ступени, имевшая двигатель с регулируемой тягой.

Перед возвращением на Землю лунному модулю необходимо было вначале вновь попасть на орбиту искусственного спутника Луны и состыковаться с основным блоком КК. С этой целью использовалась взлетная ступень лунного модуля. Затем, для старта к Земле, снова включался (на 149 с) маршевый двигатель основного блока КК. Возвращаемая часть КК входила со второй космической скоростью в земную атмосферу и после торможения в ней совершала посадку на парашютах.

Общую разработку ракетно-космического комплекса в целом и самого КК осуществляли специалисты центра пилотируемых полетов в Хьюстоне. Многие из них участвовали ранее в создании КК «Меркурий», использовался также опыт, накопленный в процессе выполнения программы «Джемини». Ряд вопросов конструирования ракетно-космического комплекса, его отдельных частей и систем потребовал существенной модернизации конструкторских решений или даже нового подхода. Большое внимание уделялось надежности и особенно безопасности полета, однако полностью избежать серьезных аварий как при наземной отработке, так и в полете не удалось.

Космические корабли doc2fb_image_0300000A.png
Рис. 9. Компоновка основного блока КК «Аполлон»: 1 — тормозные парашюты, 2,3 — двигатели управления по тангажу командного модуля, 4 — хранилища груза, 5 — двигатели управления по крену командного модуля, 6 — блок вспомогательных двигателей служебного модуля, 7 — топливные баки маршевого двигателя, 5 — маршевый двигатель, 9 — остронаправленная антенна, 10 — баки топливных элементов, 11 — топливные элементы, 12 — бачок с питьевой водой, 13 — двигатели управления по курсу командного модуля, 14 — огнетушитель, 15 — топливные баки системы ориентации командного модуля, 16 — хранилище пищи, 17 — командир. КК, 18 — основные парашюты, 19 — пилот основного блока, 20 — пилот лунного модуля, 21 — стыковочный механизм

Основной блок КК «Аполлон» состоял из двух модулей (рис. 9): командного, который возвращался на Землю, и служебного с маршевой двигательной установкой и другим оборудованием, использовавшимся при полете в космическом пространстве. Масса командного модуля после приводнения составляла 5,3 т.

Состав систем и их размещение в модулях основного блока примерно соответствовали другим КК, которые использовались для орбитальных полетов. В командном модуле находилось все, что нужно было для трех космонавтов при полете до 16 сут, вплоть до приводнения. Кроме того, в его передней части размещался активный стыковочный агрегат с переходным туннелем. Этот агрегат служил для стыковки с лунным модулем, причем использовался дважды — для перестыковки (рис. 10) и на участке полета к Луне. Необходимость в перестыковке заключалась в том, что лунный модуль находился под основным блоком КК внутри переходника РН. Такая компоновка обеспечивала рациональное построение САС и защищала лунный модуль при полете РН в атмосфере. Вторая стыковка выполнялась на орбите искусственного спутника Луны.

Космические корабли doc2fb_image_0300000B.png
Рис. 10. Схема перестыковки КК «Аполлон»: 1 — основной блок, 2 — створки переходника, 3 — лунный модуль, 4 — третья ступень РН

В служебном модуле кроме маршевого двигателя тягой 91 кН, а также баков с запасом топлива до 18,5 т (аэрозин-50 + четырехокись азота) размещались двигатели реактивной системы управления в виде четырех блоков (четыре двигателя тягой по 450 Н). Эта система с запасом топлива 0,6 т (монометилгидразин + четырехокись азота) в автономных баках была полностью продублирована, в том числе по системе питания. Подобная же система, но из 12 двигателей тягой по 415 Н и запасом топлива 111 кг имелась также в командном модуле для управления КК при спуске в атмосферу.

Кроме того, в служебном модуле размещались топливные элементы системы электропитания (3 комплекта» в том числе запасной, мощностью по 1,4 кВт) с запасом жидкого кислорода и водорода в специальных баках. Имелись также отдельные баки с жидким кислородом для снабжения системы жизнеобеспечения КК при полете в космическом пространстве. Помимо этого в систему электропитания входили аккумуляторные батареи емкостью 400 А. ч и статические (на твердотельных элементах) преобразователи постоянного напряжения (28 В) в переменное (117 В, 400 Гц), необходимое для электропитания аппаратуры. Среднее потребление электроэнергии составляло по КК «Аполлон» приблизительно 2 кВт.

Надежность системы электропитания, основных потребителей и распределителей электроэнергии достигалась, в частности, тем, что на борту фактически имелись две электрические независимые системы (при помощи каждой из них можно было запитывать и управлять всеми основными системами КК). В командном модуле также размещались 3 батареи аккумуляторов емкостью 98 А. ч; две из них служили дополнительным источником электроэнергии в периоды потребления пиковой мощности, еще одна использовалась только для коммутации пиросредств.

Пиротехника нашла широкое применение в ракетно-космической технике. Она используется там, где необходимо одноразовое, очень быстрое срабатывание с высокой надежностью: пиросредства просты, компактны и обладают очень высокой удельной мощностью. С их помощью обычно происходит разделение ступеней РН, сброс обтекателей, элементов САС, разделение отсеков КК, раскрытие различных элементов конструкций, отстрел крышек, производится срабатывание многочисленных клапанов в двигательных установках и других системах. Для выполнения этих действий на КК «Аполлон», например, было установлено около 300 пироустройств.