Изменить стиль страницы

Когда Слайфер рассказал Ловеллу о своем успехе, тот воскликнул: «Похоже, что Вы сделали великое открытие. Проверьте для подтверждения еще несколько туманностей». Профессор Джон Миллер своему бывшему университетскому воспитаннику написал: «Думается мне, что Вы нашли золотую жилу и, старательно работая, сможете сделать вклад такого же значения, как вклад Кеплера, но только совсем в ином роде». Вскоре Слайфер получил спектр туманности NGC 4594 в Деве. Ее скорость оказалась равной 1000 км/с.

На Ловелловской обсерватории началась упорная работа. "Уже на фотографирование спектра туманности Андромеды целиком уходила длинная осенняя ночь. Остальные туманности были намного слабее, и для них требовались экспозиции в десятки часов. Наблюдения одного объекта растягивались на многие ночи, а порой и на весь безлунный период. К концу 1914 г. у Слайфера уже были спектры около 40 туманностей и звездных скоплений и для 15 туманностей он попытался измерить лучевые скорости. О своих результатах он рассказал на съезде Американского астрономического общества, где впервые присутствовал Хаббл, а в январском номере журнала «Популяр астрономи» за 1915 г. опубликовал краткую статью.

Все туманности имели огромные скорости — от двух-трех сотен до 1100 км/с. Но что самое интересное, почти все скорости были положительными. Сначала исследователь думал, что знаки скоростей объектов к северу и югу от Млечного Пути различны. Это могло означать, что туманности как единый рой летят сквозь Млечный Путь. Но дальнейшие наблюдения показали, что отрицательную скорость имела лишь туманность Андромеды и ее ближайшие соседи на небе. Средняя скорость туманностей составила 400 км/с, что раз в 25 превышало скорость звезд.

Когда появляется каталог скоростей каких-то объектов, возникают две естественные задачи: определить прежде всего движение Солнца относительно их. совокупности и попытаться связать скорости с какими-то характеристиками объектов. Осторожный в работе Слайфер понимал, что лучевых скоростей еще маловато, и первую задачу решать не стал. Да и в дальнейшем, когда материал уже значительно возрос, он продолжал считать результаты изучения движения Солнца лишь предварительными.

Сопоставляя же видимое сжатие туманностей с лучевой скоростью Слайфер заметил, что сплюснутые туманности движутся быстрее. Создавалось впечатление, что они несутся в пространстве вперед не плашмя, а ребром Тут обычная осмотрительность Слайферу изменила. На самом деле эффект оказался всего лишь игрой случая при малом числе объектов.

Не прошло и года, как в тот же журнал поступила небольшая заметка, написанная сотрудником университета штата Айова Труменом. Автор не был сколько-нибудь заметной фигурой в астрономии — научных статей у него мало и особого интереса они не представляют. Но этой работой он оставил свое имя в истории науки как первый в ряду предшественников Хаббла в деле изучения движения туманностей.

Если Солнце летит среди некоторой группы объектов и компоненты его скорости по трем осям координат, направленным в точку весеннего равноденствия, в точку на 90° от нее в плоскости небесного экватора и в полюс, X, Y и Z, то наблюдаемая лучевая скорость равна

X cos α ∙ cos δ +  sin α ∙ cos δ + Z sin δ = Vr,

где α и δ — небесные координаты: прямые восхождения и склонения объектов. Имея ряд объектов, можно решить систему таких уравнений, найти X, Y и Z и определить полную скорость Солнца, а также направление его движения. Так Трумен и поступил. Нового в методе ничего не было. Астрономы уже давно применяли его к звездам. Новыми были впервые анализируемые туманности.

На самом деле кинематическое уравнение не точно и отражает лишь движение Солнца относительно всей группы объектов, тогда как каждый из них движется еще и относительно другого. Поэтому искомые величины получаются с ошибками тем значительнее, чем меньше число объектов, больше их собственная подвижность и хуже точность лучевых скоростей. Неуверенность в решении Трумена была немалой, но общий результат представлялся все же реальным. Солнце двигалось к точке между созвездиями Стрельца и Козерога — своему апексу — со скоростью 670 км/с или, что равносильно, совокупность туманностей с той же скоростью летела в противоположном направлении.

Ничего не зная о работе Трумена, два канадских астрофизика из обсерватории Виктории, специалисты по спектрально-двойным звездам Юнг и Харпер, также взялись за решение кинематической задачи. И метод, и материал оставались одинаковыми, а небольшие отличия были лишь техническими. Уже собираясь посылать заметку в журнал, они получили работу Трумена и убедились, что их результаты практически совпадают с результатами американца. Скорость в 598 км/с, найденную ими, они назвали скоростью Вселенной.

В середине 1916 г. в «Публикациях Тихоокеанского астрономического общества» появилась еще одна работа на ту же тему. Ее автор, ассистент Ликской обсерватории Паддок подошел к проблеме несколько по-иному. Пусть направление движения Солнца уже известно (он брал его по Юнгу и Харперу или задавался некоторыми другими значениями), тогда выражение для лучевой скорости любой туманности можно записать в виде

V¤∙ cos λ + K = Vr.

Угол λ — это угловое расстояние на небесной сфере между апексом Солнца, движущегося относительно туманностей с полной скоростью V¤, и исследуемым объектом. Паддок впервые ввел для туманностей так называемый K-член, некую добавку к солнечной скорости. В случае звезд такой член уже вводили и еще в 1903 г. его существование обнаружили американцы Фрост и Адаме, а затем в 1910 г. подтвердили голландский астроном Каптейн и тот же Фрост. Формально положительный K-член означал, что вся совокупность звезд в среднем удаляется от нас со скоростью К. Уже потом выяснилось, что могут быть и другие причины появления K-члена, связанные не с реальным движением, а со смещением спектральных линий в поле тяготения массивных звезд или в общем поле тяготения больших масс Вселенной согласно теории относительности.

Какие бы варианты решений Паддок ни делал, K-член всегда оказывался в пределах 248—338 км/с и положительным. Из его знака следовало, что туманности «удаляются не только от наблюдателя или нашей звездной системы, но и друг от друга». Полученное решение, «несомненно, должно содержать постоянный член, чтобы представить действительное расширение или член в спектральных смещениях линий, не связанный со скоростями»,—писал Паддок. Для туманностей К-член по величине резко отличался от звездного, составлявшего всего лишь несколько километров в секунду.

В США уже вышло три работы с анализом скоростей туманностей, а тот, кто тратил на получение материала бессонные утомительные ночи, все еще молчал. И только 13 апреля 1917 г. на заседании Американского философского общества Слайфер выступил с докладом «Туманности». Философское общество объединяет ученых разных специальностей и два других доклада на этом заседании никакого отношения к астрономии не имели. Сообщение Слайфера во многом было популярным обзором как общих данных о туманностях, так и работ, выполненных им самим. Он рассказывал о трудностях наблюдений туманностей, упомянул о том, что туманности вращаются. Слайфер продолжал верить, что туманности летят в пространстве вперед своим краем. (Любопытно, что и пять лет спустя об этом же писал Вирц и только в 1925 г. Лундмарк закрыл вопрос, не обнаружив корреляции между лучевой скоростью туманностей и их сжатием.)

Но ценность доклада была в другом. Упорно продолжая работать, Слайфер к 1917 г. довел число туманностей с измеренной лучевой скоростью до 25. «Средняя скорость .с учетом знака положительна, она указывает, что туманности удаляются со скоростью около 500 км/с. Это может означать, что спиральные туманности разлетаются,— говорил Слайфер и тут же с осторожностью добавлял,— но их распределение на небе не согласуется с этим, поскольку они имеют склонность к образованию скоплений». Этот аргумент, не играющий здесь на самом деле никакой роли, вероятно, казался ему очень существенным.