В жизни А. Ф. Лосева был короткий период, когда внешние условия складывались, казалось, вполне благоприятно для его творческих планов. Таковым было время работы на философском факультете Московского университета в начале 40–х годов, когда там создавалась кафедра логики. В архиве А. Ф. Лосева сохранился «План научно–исследовательской работы философского факультета МГУ на 1943 г.», где по разделу «Логика» планировалось издание работы А. Ф. Лосева объемом в три печатных листа. Обширная статья под названием «Логическая теория числа» была действительно написана (она представляет собой переработанные начальные главы «Диалектических основ математики»), однако ни в 1943 г., ни потом при жизни автора не публиковалась [234].
Та же участь ожидала и все остальные труды, созданные в ходе логико–философского «штурма». Он был предпринят А. Ф. Лосевым в основном до момента изгнания из университета в результате доноса и обвинения в «идеализме». Так, после 1944 г. пришлось (правда, не сразу) оставить тему «философии числа» и в дальнейшем сосредоточиться— уже более удачливо — на «истории античной эстетики». Так надежды на относительную нейтральность логико–математических тем оказались иллюзорными, и обо всем размахе лосевских замыслов и результатов в этой области может судить лишь современный читатель. В который раз подтвердилась истина, со знанием дела констатированная П. А. Флоренским, о неизбежности отставания по фазе по меньшей мере на полвека между взлетом одинокого творчества и признанием заслуг творца медленно дозревающим обществом.
Кроме обстоятельств внешнего порядка сознательные и углубленные логико–математические «экскурсы» диктовались и внутренней потребностью творческого бытия философа. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла не только с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число. Вслед за (или, вернее, вместе с) «философией имени» и «абсолютной мифологией» должна была быть построена и «философия числа». Но в строительстве этом существенно различался род действий, о чем надобно судить с должной бережностью и пониманием.
Очевидное тяготение А. Ф. Лосева к систематическому методу диалектики с опорой на упомянутую выше триаду позволяет с уверенностью определить его принадлежность к давней и необычайно стойкой традиции. Первое звено в этой цепи преемств составляют Платон и Аристотель, далее следуют неоплатоники во главе с Плотином и Проклом, затем — Николай Кузанский, потом — немецкие идеалисты в лице Шеллинга и Гегеля, наконец, новое и последнее звено было ковано на кузне отечественной мысли… Конечно, диалектическим методом владели многие из лосевских учителей и современников, вспомним В. Соловьева, Флоренского, Франка, Карсавина, Ильина, Муравьева. Лосевская мысль на этом фоне выделяется своим идейным монизмом, непоколебимой последовательностью в приложениях, принципиальным универсализмом, возведенным в принцип. Но не только. Здесь явлен итог, произнесено последнее слово. По словам автора Предисловия к «Диалектическим основам математики», в «случае Лосева» мы имеем дело с одним из «завершительных, резюмирующих умов», каковые «всегда появлялись в конце великих эпох для того, чтобы привести в систему вековую работу мысли и создать инвентарь умирающей культуры, чтобы передать его новой культуре, только еще строящейся» (6—7) [235].
Уточним теперь характер означенного образа платоновской цепи, точнее сказать, цепи платоновско–лосевской, если брать ее крайние звенья. Когда в 20–х годах систематизирующая мысль А. Ф. Лосева касалась проблем идеологических, социальных и религиозных, платонизм получал (когда—скрытое, когда — открытое) православное переосмысление и критику. «Последний русский диалектик» не порывал с двухтысячелетней традицией, но указывал ее недостатки и даже опасности (для непосредственного жизнепонимания) вроде, скажем, безличного онтологизма или пантеизма. Потому в сферах Имени и Мифа цепь нуждалась в принципиальном дополнении. Когда же в 30—40–х годах А. Ф. Лосев сосредоточился на философских вопросах математики и логики, полагаясь на относительную нейтральность этой области, прежняя неоплатоническая техника мысли уже не требовала качественных изменений. В сфере Числа цепь укреплялась не столько наращиванием, сколько отделкой в каждом из старых звеньев. По приложении старинного и даже древнего метода, в свете незыблемых «принципов» недостающее обобщение получали именно «факты» той обширной области точных наук, что традиционно считалась самой структурированной и развитой областью знания Нового времени.
Со страниц логико–математических исследований А. Ф. Лосева встают тени великих предшественников. Ажурная архитектоника лосевской «Логической теории числа», безусловно «одного из шедевров в философской литературе, занимавшейся числом» (12), соразмерна, сомасштабна, соприродна триадическим построениям «учения о бытии» из «Науки логики» Гегеля. Когда в «Диалектических основах математики» обнаруживаются веские суждения о «множестве всех чисел» и за таковым закрепляется термин «тотальность», в родственном ряду мы тут же находим «единство множества», Totalitat Шеллинга. И в той же книге прослеживая логическую «дедукцию геометрических фигур», нужно вспомнить более ранние построения «Античного космоса и современной науки», которые выводят нас прямо к Проклу с его комментариями «Элементов» Евклида. Чтение философского эссе «О форме бесконечности» (523—533) почти невольно заставляет вспоминать трактат «Об ученом неведении» Николая Кузанского — столь равномощны и равнозначимы эти два текста. Во всяком случае там, где затрагиваются одни и те же темы, разительно совпадают и результаты. Можно приводить еще много примеров подобных перекличек или, вернее, своеобразного диалога единомышленников. Даже в тех случаях, когда в своем диалектическом освещении нескончаемой математической «эмпирии» А. Ф. Лосев обращается к проблемам, еще незнакомым его предшественникам (несчетность в теории множеств, типы логик и геометрий, теория вероятностей и т. д.), им, кажется, руководит уверенность, что античные неоплатоники и немецкие диалектики—доведись им творить сегодня — воспарили бы в тех же логических «эмпиреях», где в реально–историческом одиночестве пребывал их российский vis a vi.
§ 2. «В ТРАНШЕЯХ ЛЕНИНСКОЙ ДИАЛЕКТИКИ»
Приступая к характеристике лосевской «философии числа», мы воспользуемся излюбленным приемом ее автора, методом «меональ–ного отграничения»: чтобы подвести к какому–нибудь «это», нужно всесторонне рассмотреть «то, что не есть это». Приверженность подобной интеллектуальной технике (ее применял Сократ и особенно любили неоплатоники) лишний раз показывает и доказывает действительную цельность творчества А. Ф. Лосева, который предстает диалектиком и по внутренней содержательности полученных результатов, и по внешней стилистике способа добывания таковых.
Итак, каким же было «Нет непримиримое» в ту именно пору, когда творилось «слепительное Да» этого «маленького философа в Советском Союзе»? Для ситуации характерен заголовок небольшой заметки из газеты «Вечерняя Москва» за 10 апреля 1929 г.: «В траншеях ленинской диалектики [236]. В статье не без торжественности извещалось о решающей схватке (шла 2–я конференция марксистских научно–исследовательских учреждений) между отечественными «механистами» и «диалектиками». Здесь нас не занимают подробности этой малонаучной и не без зловещих оттенков дискуссии, приведшей в конце концов к прямым репрессиям многих ее участников, как «победителей», так и «побежденных». Важнее отметить специфически «фронтовую» риторику тех лет, а также тот факт, что как раз с этого небольшого текста следует начинать отсчет [237]всей череды многочисленных выступлений в тогдашней печати, где так или иначе поминался «идеалист и мистик Лосев». После заметки «Вечерней Москвы», впервые изложившей доклад А. М. Деборина (с него 8 апреля 1929 г. открывалась упомянутая всесоюзная конференция), появился короткий комментарий в «Правде» за 11 апреля. Чуть позже уже сам доклад под названием «Современные проблемы философии марксизма» был опубликован в полном объеме сначала «Вестником Коммунистической Академии», затем тремя отдельными изданиями 1929—1930 гг., вместе со стенограммами прений по докладу.