Изменить стиль страницы

Силы межмолекулярного взаимодействия ныне называют ван-дер-ваальсовыми. Но уравнение Ван-дер-Ваальса имеет и большое теоретическое значение. Оно математически описывает процессы фазового перехода. Так, очевидно, что по мере уменьшения объема под действием внешнего давления «внутреннее давление» возрастает, причем быстрее внешнего. В тот момент, когда внутреннее давление превысит внешнее, ван-дер-ваальсовы силы уже не дадут молекулам удалиться друг от друга, газ превратится в жидкость. Кроме того, следует отметить, что уравнение Ван-дер-Ваальса демонстрирует кубическую зависимость между объемом и давлением при данной температуре. Кубические же уравнения имеют не более трех действительных корней. Следовательно, при некоторых температурах и давлениях объем может иметь одно из трех значений. Одно соответствует жидкой фазе, второе – газообразной, а третье – состоянию фазового перехода. Уравнение помогло математически объяснить одно ранее непонятное явление, а именно: если температура газа превышает некоторую критическую (для данного вещества величину), то никакие изменения давления не смогут вызвать его сжижения. Дело в том, что при критических температурах все три корня уравнения Ван-дер-Ваальса сливаются в один.

Но вернемся, собственно, к биографии ученого. Благодаря докторской диссертации Ван-дер-Ваальс приобрел известность в научном мире. Например, Джеймс Максвелл, который, надо заметить, не во всем соглашался со своим нидерландским коллегой, тем не менее, писал, что работа Ван-дер-Ваальса «сразу поставила его имя в один ряд с самыми выдающимися именами в науке» и «направила внимание исследователей на изучение голландского языка». 4 мая 1875 года Ван-дер-Ваальс был провозглашен действительным членом Амстердамской академии наук. Еще через два года он стал первым и единственным профессором физики недавно открытого Амстердамского университета. Несмотря на большую преподавательскую нагрузку, Ван-дер-Ваальс продолжал исследования. В 1880 году он сделал на основании своего уравнения важное обобщение: введя так называемые «приведенные параметры», ученый получил уравнение состояния, не содержащее индивидуальных для каждого вещества констант; из этого уравнения следовал закон соответствующих состояний. Согласно этому закону, если для рассматриваемых веществ значения двух приведенных переменных одинаковы, должны совпадать и значения третьей приведенной переменной. Этот закон также не идеально описывает поведение реальных веществ, но он имеет большое практическое значение. Так, руководствуясь им, англичанин Джеймс Дьюар в 1898 году получил жидкий водород, а еще через 10 лет голландец Хейке Камерлинг-Оннес – жидкий гелий.

Казалось, что Йоханнес Ван-дер-Ваальс находится в начале блестящей научной карьеры. Но в 1881 году произошла трагедия: в декабре от туберкулеза скоропостижно скончалась Анна Магдалена Ван-дер-Ваальс. Йоханнес был сломлен этим тяжелым ударом. Полностью оправится от него ученый не смог до конца своих дней. В новый брак он так и не вступил и посвятил себя воспитанию детей. В этом ему очень помогала старшая дочь Анна Мадлен, которая после смерти матери взяла на себя домашние заботы. Дети Ван-дер-Ваальса получили хорошее образование. Дочь Жаклин Элизабет стала историком и весьма известной поэтессой, а сын, Йоханнес Дидерик-младший пошел по стопам отца и занимался физикой.

Долгое время после смерти жены, несмотря на уговоры и убеждения коллег, Ван-дер-Ваальс не желал возвращаться к научной деятельности. Только в 1890 году, после десятилетнего перерыва, он опубликовал работу «Теория бинарных смесей», в которой вывел общее уравнение для таких смесей. В 1893 году в одной из своих работ ученый положил начало термодинамической теории капиллярности. Свои оригинальные университетские лекции ученый собрал в двухтомный труд «Курс термодинамики», над которым трудился много лет.

Научный мир по достоинству оценил заслуги голландского ученого. В 1896 году он был избран секретарем Физико-математического отделения и непременным секретарем Амстердамской академии наук. Также он стал почетным членом многих других научных организаций. Вершиной же научной славы Йоханнеса Ван-дер-Ваальса стало присуждение ему в 1910 году Нобелевской премии. При награждении было, как обычно, отмечено прикладное значение открытия: «Исследования Ван-дер-Ваальса имеют огромное значение не только для чистой науки. Современное конструирование холодильных установок, которые ныне являются столь мощным фактором нашей экономики и индустрии, базируется в основном на теоретических исследованиях награжденного».

Умер Йоханнес Дидерик Ван-дер-Ваальс 9 марта 1923 года в Амстердаме.

СТОЛЕТОВ АЛЕКСАНДР ГРИГОРЬЕВИЧ

(1839 г. – 1896 г.)

100 знаменитых ученых i_057.jpg

Ученый с невозможным характером – так называли Александра Григорьевича Столетова его современники… Он родился 29 июля (10 августа) 1839 года в небогатой купеческой семье. Его отец, Григорий Михайлович, владел бакалейной лавкой и мастерской по выделке кож в городе Владимире, мать, Александра Васильевна, была образованной для своего времени женщиной и сама обучала своих детей до их поступления в гимназию русскому языку и арифметике.

Уже в четыре года маленький Саша научился читать. Он рос болезненным мальчиком, и неудивительно, что чтение превратилось в его любимое занятие. В дальнейшем любовь к чтению сформировала потребность к самостоятельному литературному творчеству. В гимназии Саша вместе с товарищами выпускал рукописный журнал, в котором, в частности, была опубликована его автобиографическая повесть «Мои воспоминания».

В семье Столетовых, кроме Александра, было еще пятеро детей. Вслед за старшим братом Николаем Саша выучил французский язык, а под влиянием старшей сестры Вари серьезно увлекся музыкой.

В 1849 году Александр Столетов поступил во Владимирскую гимназию. Обучение он завершил в 1856 году, получив свидетельство, в котором было написано, что он «признан окончившим гимназический курс с предоставлением права поступления в Университет без вторичного экзамена и с награждением за отличные успехи в науках золотой медалью». Осенью того же года юноша был зачислен на физико-математический факультет Московского университета «казеннокоштным» студентом с предоставлением государственной стипендии.

В 1860 году Столетов с отличием закончил обучение в университете. Практически сразу же руководство факультета ходатайствовало об оставлении талантливого молодого ученого при университете: ведь по существовавших тогда правилам «казеннокоштный» студент был обязан после окончания учебного заведения отработать шесть лет «по учебной части Министерства народного просвещения». Пока длилась переписка с официальными инстанциями, Александр не терял времени даром: целые дни он проводил в библиотеке, готовясь к магистерскому экзамену. Наконец, 5 сентября 1861 года пришло долгожданное разрешение, и уже 16 октября Столетов подал прошение ректору университета: «Желая получить степень магистра физики, покорнейше прошу допустить меня к устраиваемому испытанию». Экзамен был успешно сдан, но защиту диссертации пришлось отложить: летом 1862 года молодой ученый отправился в заграничную командировку.

За границей Столетов пробыл три года, упорно изучая физику в университетах Гейдельберга, Геттингена и Берлина. Впоследствии современники вспоминали, что тем, кто проходил курс наук у Густава Кирхгофа, доводилось слышать рассказы «об одном молодом русском, с виду почти мальчике, изумлявшем всех своими блестящими способностями». Речь шла о Столетове, которого великий Кирхгоф называл «самым талантливым своим учеником».

За границей Александр провел свое первое серьезное научное исследование. Он установил, что диэлектрические свойства среды не влияют на электромагнитное взаимодействие проводников электрического тока. В конце 1865 года Столетов вернулся в Россию и вскоре получил место преподавателя математической физики и физической географии в Московском университете. Здесь он не только читал блестящие лекции студентам, но и работал над магистерской диссертацией, посвященной проблеме «общей задачи электростатики» – о наведении зарядов на первоначально незаряженном проводнике в присутствии заряженного, воздействии этих зарядов на заряженный проводник и перераспределении зарядов вплоть до наступления электростатического равновесия. Молодому ученому удалось решить эту задачу для самого общего случая: взаимодействия произвольного числа проводников. В мае 1869 года Александр блестяще защитил магистерскую диссертацию и был утвержден в звании доцента.