У нас, конечно, поинтересуются – чем же нас не устраивает традиционное объяснение причин тепловых эффектов химических реакций. Например, при экзотермической реакции, тепло выделяется за счёт увеличения энергии химических связей у продуктов реакции по сравнению с реагентами – это, мол, считается твёрдо установленным. Ага! Считается! Сейчас мы покажем, как это «считается» - буквально! Энергии химических связей – они ведь характеристические, правда? Т.е., они определяются лишь свойствами атомов, сцепившихся в молекулу, и не зависят от внешних химических параметров, вроде температуры и давления. Если – и у реагентов, и у продуктов реакции – энергии химических связей характеристические, то и разность этих энергий, т.е. тепловой эффект реакции, тоже должен быть характеристическим. Так ведь нет! Величины тепловых эффектов, как правило, зависят от температуры! Чтобы не делать сокрушительный для термохимии вывод о непостоянстве энергий химических связей, теоретики вот до чего додумались: единственной, мол, причиной температурных зависимостей тепловых эффектов являются температурные зависимости теплоёмкостей у реагентов и продуктов реакции. И сформулировали закон Кирхгофа: производная по температуре от теплового эффекта реакции равна разности теплоёмкостей начальных и конечных веществ. Но чтобы привести справочные зависимости тепловых эффектов и теплоёмкостей в согласие с законом Кирхгофа, потребовалась адова работа. Как те, так и другие измеряются калориметрическим способом – не будучи при этом независимыми и образуя порочный круг (см. выше). Но это – ещё пустячки по сравнению с тем, что температурная зависимость теплоёмкости того или иного вещества, полученная по результатам исследования одних реакций, даёт неверные предсказания применительно к другим реакциям. Требуются пересчёты: согласования и пересогласования. Немалая часть справочных величин – теплоёмкостей, теплот образования, энергий диссоциации – получена не эмпирическим путём, а на основе калькуляций. Да и закон Кирхгофа подтверждается, по сути дела, лишь калькуляциями – выполненными именно так, как требует этот закон! Да, термохимикам не позавидуешь. Исследуется какая-нибудь новенькая реакция – и, по-хорошему, все справочники надо переписывать заново. А число реакций всё множится и множится… В этой адовой работе задействованы целые научно-исследовательские институты! Всё уточняют и уточняют, всё перечитывают и пересчитывают… и конца-края не видно. Вот так оно и «считается твёрдо установленным». Каким цифрам можно доверять в современных справочниках термодинамических величин – этого никто не знает.
Вот уж не от хорошей жизни допустили температурные зависимости теплоёмкостей – но жизнь от этого лучше не стала. Причём, ладно бы термохимики мучились сами – нет, они щедро поделились со специалистами по молекулярно-кинетической теории. В этой теории есть закон о равнораспределении энергии по степеням свободы: на каждую механическую степень свободы приходится энергия kT/2, где k– постоянная Больцмана, T– абсолютная температура. Отсюда следует, что энергия теплового движения молекул некоторого количества газа зависит только от температуры, будучи ей прямо пропорциональна. А теплоёмкость есть производная от тепловой энергии по температуре – и, в данном случае, теплоёмкость, очевидно, должна быть железобетонной константой. Фиг вам: незаметно подкрадываются термохимики и огорошивают: не всё так просто, ибо температурные зависимости теплоёмкостей им нужны позарез. Мол, делайте, что хотите, но через день – родите! Ну, давайте внимательно посмотрим на это выражение для теплоёмкости, в которое, кроме постоянной Больцмана, входят сомножителями число молекул нашей порции газа и число степеней свободы у молекулы. Что из них может зависеть от температуры? Не постоянная же Больцмана! И не число молекул. Может, от температуры зависит число степеней свободы у молекулы? Было три, а потом, при определённой температуре – опа! – и стало четыре! Нет, так тоже не пойдёт. Термохимикам надобно, чтобы теплоёмкость изменялась не скачками, а плавно – проходя все промежуточные значения. Представляете - p степеней свободы у молекулы! В этом месте классическая молекулярно-кинетическая теория потеряла дар речи – и, как обычно в таких ситуациях, помогла квантовая механика. Рост теплоёмкости водорода при увеличении температуры теоретики объяснили вот как. У молекул водорода, мол, спины ядер либо параллельны (это т.н. ортоводород), либо антипараллельны (это т.н. параводород). Теплоёмкости ортоводорода и параводорода, мол, разные, а процентное соотношение того и другого плавно изменяется с температурой – вот вам и плавная температурная зависимость теплоёмкости их смеси. Допустим, что это так – но что же вы, теоретики, случаем водорода ограничились? Фантазия заглохла, что ли? Так и быть, подскажем. Вводите ортоциклогексан и парациклогексан, ортодиметилбензол и парадиметилбензол – и так далее, по всей химической номенклатуре.
Чем физики обеспечили себе все эти приключения? А вот чем: непоколебимой верой в то, что причиной тепловых эффектов химических реакций являются изменения энергий химических связей у исходных и конечных веществ. Нашли, во что верить! Учит их жизнь, учит – всё больше фактов против этой веры появляется! А они заладили, как дятлы: «Наша вера правая! Мы ошибаться не могём! А факты нам – по фиг!» И опять за своё: тепло при реакции выделяется потому, мол, что молекулы продуктов связаны сильнее, чем молекулы реагентов. Эта реакция идёт потому, мол, что ей идти выгодно: увеличение энергии связей означает скатывание в энергетическую ямочку! Да неужели? Тогда реакция с поглощением тепла идёт потому, что ей идти невыгодно – ведь уменьшение энергии связей означает закатывание на энергетический пригорочек! Да уж, экономическими понятиями тут не обойтись… И потом, бывают ведь «выгодные» реакции, при которых не происходит простого «скатывания в энергетическую ямочку»: сначала нужно разорвать связи в реагентах – а они тоже имеют запас устойчивости. Т.е., следует сначала закатиться на пригорочек, а уже потом – можно скатиться в ямочку. Вот оно, озаренье-просветленье! Если новая ямочка глубже прежней – тепло, мол, выделяется! А если мельче – наоборот, поглощается! Выгодно или невыгодно – на это уже наплевать, поскольку всё свелось к чистой арифметике. Чтобы закрепить этот продвиг, сделали вот что: энергию, соответствующую тому самому пригорочку, через который переваливает реакция, назвали энергией активации. И идеологию насадили: в реакцию вступают не абы какие сблизившиеся молекулы, а только самые достойные: которые имеют подходящую энергию активации. А берётся она, например, из-за теплового движения: молекулы реагентов вмазываются друг в друга так, что получается «активированный комплекс», а распадается он уже на новые молекулы, на продукты. Но, при энергии активации в несколько эВ, как же идут реакции при комнатной температуре, когда средняя энергия теплового движения молекулы составляет несколько сотых эВ? Нам поясняют, что при этом в реакцию вступают лишь самые быстрые молекулы. О, как! А что же вы скажете про реакции, которые идут до конца, при которых реагенты полностью превращаются в продукты? Специалисты и здесь нашли мудрое решение: ничего не говорить про такие реакции, т.е. помалкивать. Тогда уж пусть заодно помалкивают про то, куда они со стыда девают концепцию энергии активации при описании химических равновесий. Речь о таком динамическом состоянии системы, при котором количества элементарных актов прямой и обратной реакций одинаковы, а температура и давление в системе остаются постоянными. Заметим: здесь исходникам реакции, идущей с выделением тепла, проще «забраться на пригорочек» энергии активации, чем исходникам реакции, идущей с поглощением тепла. Поэтому, при конкретной температуре, равенство скоростей прямой и обратной реакций было бы возможно лишь когда количество исходников реакции с поглощением тепла больше количества исходников реакции с выделением тепла. Но бывает и наоборот – например, равновесия при промышленном синтезе аммиака из азота и водорода. Только это не отражается на трогательных рассуждениях физхимиков насчёт управления скоростями химических реакций: «Чтобы повысилась скорость реакции, надо снизить энергию активации!» Видите – в рифму даже. Правда, рифма-то есть, а смысла нету. Ибо, если сказать: «надо, чтобы маленькие зелёные человечки шустрее забегали» - смысла будет столько же.