Между прочим, по модели, которая даёт ответы на вышеперечисленные вопросы, получается, что если энергию связи, приходящуюся на один нуклон, считать честно, то никакой её разницы для тяжёлых ядер и их осколков – нет. Никакой энергетической выгодности для развала на осколки! А разваливается тяжёлое ядро оттого, что, при попадании в него теплового нейтрона, связи в ядре рассыпаются не из-за грубого силового воздействия, а из-за нарушения синхронизма их переключений, обеспечивающих динамическую структуру ядра. При делении ядра на два осколка, аварийно рассыпаются те связи, которые сцепляли эти осколки в исходном ядре. Возникает нештатная ситуация, при которой собственные энергии (т.е. массы) нуклонов уменьшены – на величину энергии ядерных связей – но самих этих связей уже нет. Эта нештатная ситуация немедленно исправляется: собственные энергии нуклонов остаются как есть, а бывшие энергии распавшихся связей превращаются в кинетическую энергию нуклонов – и, в конечном счёте, в кинетическую энергию осколков ядра. То есть, кинетическая энергия осколков ядра – это бывшая энергия ядерных связей, удерживавших эти осколки в исходном ядре. Это подтверждают не только элементарные расчёты, но и малоизвестный факт независимости кинетической энергии осколков от силы воздействия, вызывающего деление ядра. Так, при инициировании деления ядер урана протонами с энергией 450 МэВ, кинетическая энергия осколков составляла 163 МэВ – т.е. столько же, сколько и при инициировании тепловыми нейтронами!

Заметим, что этот принцип – превращение в кинетическую энергию бывшей энергии связей при нештатном отрубании этих связей – можно использовать не только в случаях, когда количество отрубаемых связей ограничено, так что результатом является всего-то распад ядра на жалкие два осколка. Этот принцип можно использовать с гораздо большим размахом, дающем в результате тотальный развал вещества на протоны, нейтроны и электроны. При этом вся бывшая энергия связей этих частиц превратится в кинетическую энергию их разлёта. А это всё теплотища в чистом виде! Ух, как припекать-то будет! Говорят вон, что Солнышко именно так и работает – без всяких сказочек про термоядерные реакции (про которые с самого начала их изучения отлично известно, что они принципиально не идут; см. «Фокусы-покусы квантовой теории»). То есть, чтобы Солнышко светило и грело, нужно сделать что? А вот что. Сначала нужно сформировать солнечное тяготение (см. «Бирюльки и фитюльки всемирного тяготения»), которое тянуло бы вещество к центру этой области. А затем, когда вещества там соберётся достаточно, нужно «включить» солнечный реактор – для чего в центральной шаровой области нужно всего лишь заблокировать действие структуро-образующих алгоритмов, благодаря которым существуют атомные и ядерные структуры. Вещество, из-за действия тяготения попадающее в эту шаровую область, т.е. в рабочий объём реактора, будет разваливаться там на протоны, нейтроны и электроны – которые, приобретя в результате этого развала неслабую кинетическую энергию, будут разлетаться по белу светушку. Кстати, откуда он берётся, бел светушек? Это совсем просто. В равновесном режиме работы Солнышка, поток вещества, падающего в него из-за действия тяготения, скомпенсирован встречным потоком протонов, нейтронов и электронов, которые прут из рабочего объёма реактора. Есть шаровой слой, в пределах которого эти встречные потоки эффективно схлёстываются, отчего атомы и ионы, падающие в Солнце, ударно возбуждаются и высвечиваются, давая сплошной спектр, т.е. белый свет. Вот она какая, фотосфера-то!

Эта, казалось бы, примитивная модель не только одним махом устраняет кучу проблем, в которых запутались ортодоксы, но и имеет очевидные опытные подтверждения. Так, имеет место и падение вещества на Солнце (по-научному это называется «аккреция» - чтобы публика ни о чём таком не догадалась), имеет место и разлёт субатомных частиц из Солнца (по-научному это называется «солнечный ветер» - тоже ради публики). Причём, мощность излучения Солнца неплохо соответствует интенсивности солнечного ветра, если считать, что каждый протон и нейтрон, освобождаемые в солнечном реакторе, приобретают среднюю кинетическую энергию 6 МэВ. Может это совпадение объяснить термоядерная концепция? Да нет, у неё толстая кишка тонка. Вы эту термоядерную концепцию зовите, когда нужно насмешить публику – вот тут эта концепция не подкачает. Она же впаривает нам, что топливом для термоядерных реакций являются протоны. А мы видим, что протоны являются не топливом, а конечным продуктом – ведь они вылетают из Солнца в чудовищных количествах! Или, пардон, термоядерный реактор не может работать, не разбрызгивая топливо в мировое пространство? Ну, тогда «Токамаки» так никогда и не заработают. Ни за какие деньги! Ведь в «Токамаках» это разбрызгивание топлива категорически не предусмотрено!

На этом можно закончить наш рассказик про теплоту. Нас могут упрекнуть в том, что мы плохо раскрыли тему – например, ни разу не использовали такое смачное слово, как «энтропия». Извините, мы без неприличных слов обходимся. Всем не угодишь: кому-то нужно непременно картинку нарисовать, а до кого-то доходят лишь матерные выражения. Как смогли мы, так и рассказали, уж не обессудьте.

А тем, кто думают, что могут что-то объяснить с помощью энтропии, хорошо бы вспомнить про казахстанских сайгаков, да и про всю остальную одушевлённую живность. В их организмах весело трепыхаются такие биомолекулы, которые принципиально неустойчивы в неодушевлённой обстановке. В их организмах протекают такие биохимические реакции – в такую сторону и с такой бешеной скоростью – которые совершенно невозможны в неодушевлённой обстановке. Всё это настолько ужасно противоречит термодинамике с её жалкими «началами», что академики всерьёз обсуждали вопрос о том, что в живых организмах понятие энтропии работает с точностью до наоборот – и, чтобы термодинамика была и здесь справедлива, следует говорить не об энтропии, а об отрицательной энтропии (негэнтропии, как они выражались). Ну, потрындели, и чего? Помогла вам энтропия, с негэнтропией в обнимку, понять – откуда берётся энергия на работу мышц, если она берётся не из энергии химических связей съеденной пищи?

А вот Николаевский, говоря «Об энергетике мышц. О дыхании», поясняет, как мышцы работают. Секрет – в дополнительном управлении, которым охвачено одушевлённое вещество по сравнению с неодушевлённым. Получается так: в мышечном цикле использованы две биохимические реакции: множественные присоединения кислорода к длинным мышечным молекулам, отчего эти молекулы укорачиваются, и обратное отсоединение кислорода, в результате которого восстанавливается исходная длина мышечных молекул. Для обеспечения единогласного срабатывания либо той, либо другой из этих реакций, молекулы мышечных волокон переключают в одно из двух активных состояний. В первом из этих состояний создаются идеальные условия для реакции множественного присоединения кислорода, который доставляется с кровотоком. Во втором из этих состояний, присоединённый кислород «отваливается», связываясь с углеродом, поставщиком которого являются молекулы углеводов, и затем этот кислород, в составе углекислого газа, удаляется с кровотоком, освобождая место для новой порции кислорода. Спрашивается: ведь атомы в одушевлённом организме точно такие же, как и в неодушевлённом веществе! Что же может в них «переключаться»? Похоже, это совсем просто: у них переключаются конфигурации направленных валентностей. Академики не понимают, как такое может быть – да они не понимают и того, чем внешние валентные электроны отличаются от внешних невалентных, а, значит, они не понимают и того, что такое химическая связь вообще. Но зачем нам равняться на академиков? Будем равняться на тех, кто отвечает на интересные вопросы! Если, благодаря автоматическим переключениям направленных валентностей, существуют динамические структуры металлов и воды – то, управляя конфигурациями направленных валентностей в специально разработанных биомолекулах, можно вытворять что угодно!