Невозможно выполнить вместе договор в его первоначальной форме и решение суда, каким бы последнее ни было. Для доказательства этого достаточно простых средств логики. С помощью этих же средств можно также показать, что договор, несмотря на его вполне невинный внешний вид, внутренне противоречив. Он требует реализации логически невозможного положения: Еватл должен одновременно и уплатить за обучение и вместе с тем не платить.
«ВЫХОД» ИЗ БЕЗВЫХОДНОГО ПОЛОЖЕНИЯ
Человеческому уму, привыкшему не только к своей силе, но и к своей гибкости и даже изворотливости, трудно, конечно, смириться с этой абсолютной безвыходностью и признать себя загнанным в тупик. Это особенно трудно тогда, когда тупиковая ситуация создается самим этим умом: он, так сказать, оступается на ровном месте и угождает в свои собственные сети. И тем не менее приходится признать, что иногда, и впрочем не так уж редко, соглашения и системы правил, сложившиеся стихийно или введенные сознательно, приводят к неразрешимым, безвыходным положениям. Пример из недавней шахматной жизни еще раз подтвердит эту мысль.
Международные правила проведения шахматных соревнований обязывают шахматистов записывать партию ход за ходом, ясно и разборчиво. До недавнего времени в правилах было указано также, что шахматист, пропустивший из-за недостатка времени запись нескольких ходов, должен, «как только его цейтнот закончится, немедленно дополнить свой бланк, записав пропущенные ходы». На основе этого указания один судья на шахматной олимпиаде 1980 года (Мальта) прервал проходившую в жестоком цейтноте партию и остановил часы, заявив, что контрольные ходы сделаны и, следовательно, пора привести в порядок записи партий.
— Но позвольте, — вскричал участник, находившийся на грани проигрыша и рассчитывавший только на накал страстей в конце партии, — ведь ни один флажок еще не упал и никто и никогда (так тоже записано в правилах) не может подсказывать, сколько сделано ходов!
Судью поддержал, однако, главный арбитр, заявивший, что действительно, поскольку цейтнот закончился, надо, следуя букве правил, приступить к записи пропущенных ходов.
Спорить в этой ситуации было бессмысленно: сами правила завели в тупик. Оставалось только изменить их формулировку таким образом, чтобы подобные случаи не могли возникнуть в будущем.
Это и было сделано на проходившем в то же время конгрессе Международной шахматной федерации: вместо слов «как только цейтнот закончится» в правилах теперь записано: «Как только флажок укажет на окончание времени».
Этот пример наглядно показывает, как следует поступать в тупиковых ситуациях. Спорить о том, какая сторона права, бесполезно: спор неразрешим, и победителя в нем не будет. Остается только смириться с досадой с настоящим и позаботиться о будущем. Для этого нужно так переформулировать исходные соглашения или правила, чтобы они не заводили более никого в такую же безвыходную ситуацию.
Разумеется, подобный способ действий никакое не «решение неразрешимого спора» и не «выход из безвыходного положения». Это скорее остановка перед непреодолимым препятствием и дорога в обход его.
В Древней Греции пользовался большой популярностью рассказ о крокодиле и матери, совпадающий по своему логическому содержанию с парадоксом «Протагор и Еватл».
Крокодил выхватил у египтянки, стоявшей на берегу реки, ее ребенка. На ее мольбу вернуть ребенка крокодил, пролив, как всегда, крокодилову слезу, ответил:
— Твое несчастье растрогало меня, и я дам тебе шанс получить назад ребенка. Угадай, отдам я его тебе или нет. Если ответишь правильно, я верну ребенка. Если не угадаешь, я его не отдам.
Подумав, мать ответила:
— Ты не отдашь мне ребенка.
— Ты его не получишь, — заключил крокодил. — Ты сказала либо правду, либо неправду. Если то, что я не отдам ребенка — правда, я не отдам его, так как иначе сказанное мной не будет правдой. Если сказанное — неправда, значит, ты не угадала, и я не отдам ребенка по уговору.
Однако матери это рассуждение не показалось убедительным.
— Но ведь если я сказала правду, то ты отдашь мне ребенка, как мы и договорились. Если же я не угадала, что ты не отдашь ребенка, то ты должен мне его отдать, иначе сказанное мною не будет неправдой.
Кто прав: мать или крокодил? К чему обязывает крокодила данное им обещание? К тому, чтобы отдать ребенка или, напротив, чтобы не отдавать его? И к тому и к другому одновременно. Это обещание внутренне противоречиво, и, таким образом, оно невыполнимо в силу законов логики.
ПАРАДОКС РАССЕЛА
Самым знаменитым из открытых уже в нашем веке парадоксов является антиномия, обнаруженная Б. Расселом и сообщенная им в письме к Г. Фреге. Эту же антиномию обсуждали одновременно в Геттингене немецкие математики Э. Цермело и Д. Гильберт.
Идея носилась в воздухе, и ее опубликование произвело впечатление разорвавшейся бомбы. Этот парадокс вызвал в математике, по мнению Д. Гильберта, «эффект полной катастрофы». Нависла угроза над самыми простыми и важными логическими методами, самыми обыкновенными и полезными понятиями.
Сразу же стало очевидным, что ни в логике, ни в математике за всю долгую историю их существования не было выработано решительно ничего, что могло бы послужить основой для устранения антиномии. Явно оказался необходимым отход от привычных способов мышления. Но ив какого места и в каком направлении? Насколько радикальным должен был стать отказ от устоявшихся способов теоретизирования?
С дальнейшим исследованием антиномии убеждение в необходимости принципиально нового подхода неуклонно росло. Спустя полвека после ее открытия специалисты по основаниям логики и математики А. Френкель и И. Бар-Хиллел уже без всяких оговорок утверждали: «Мы полагаем, что любые попытки выйти из положения с помощью традиционных (то есть имевших хождение до XX столетия) способов мышления, до сих пор неизменно проваливавшихся, заведомо недостаточны для этой цели».
Современный американский логик X. Карри писал немного позднее об этом парадоксе: «В терминах логики, известной в XIX веке, положение просто не поддавалось объяснению, хотя, конечно, в наш образованный век могут найтись люди, которые увидят (или подумают, что увидят), в чем же состоит ошибка».
Парадокс Рассела в первоначальной его форме связан с понятием множества, или класса.
Можно говорить о множествах различных объектов, например о множестве всех людей или о множестве натуральных чисел. Элементом первого множества будет всякий отдельный человек, элементом второго — каждое натуральное число. Допустимо также сами множества рассматривать как некоторые объекты и говорить о множествах множеств. Можно ввести даже такие понятия, как множество всех множеств или множество всех понятий.
Относительно любого произвольно взятого множества представляется осмысленным спросить, является оно своим собственным элементом или нет. Множества, не содержащие себя в качестве элемента, назовем обычными. Например, множество всех людей не является человеком, так же как множество атомов-это не атом. Необычными будут множества, являющиеся собственными элементами. Например, множество, объединяющее все множества, представляет собой множество и, значит, содержит само себя в качестве элемента.
Очевидно, что каждое множество является либо обычным, либо необычным.
Рассмотрим теперь множество всех обычных множеств. Поскольку оно множество, о нем тоже можно спрашивать, обычное оно или необычное. Ответ, однако, оказывается обескураживающим. Если оно обычное, то согласно своему определению должно содержать само себя в качестве элемента, поскольку содержит все обычные множества. Но это означает, что оно является необычным множеством. Допущение, что наше множество представляет собой обычное множество, приводит, таким образом, к противоречию. Значит, оно не может быть обычным. С другой стороны, оно не может быть также необычным: необычное множество содержит само себя в Качестве элемента, а элементами нашего множества являются только обычные множества. В итоге приходим к заключению, что множество всех обычных множеств не может быть ни обычным, ни необычным множеством.