Логическая теория Фреге — прообраз всех нынешних теорий правильного рассуждения.
Идея сведения всей чистой математики к логике была подхвачена затем английским логиком и философом Б. Расселом.
Последующее развитие логики показало, однако, неосуществимость этой грандиозной по своему замыслу попытки. Оно привело все же к сближению математики и логики и к широкому проникновению плодотворных методов первой во вторую.
Современную логику нередко называют математической, подчеркивая тем самым своеобразие новых ее методов в сравнении с использовавшимися ранее.
Одна из характерных черт этих методов — широкое использование разнообразных символов вместо слов и выражений обычного языка. Символы применял в ряде случаев еще Аристотель, а затем и все последующие логики. Однако теперь в использовании символики был сделан качественно новый шаг. В логике стали использоваться специально построенные языки, содержащие только специальные символы и не включающие ни одного слова обычного разговорного языка.
Широкое использование символических средств послужило основанием для того, что новую логику стали называть символической. И с этой поры названия «математическая логика» и «символическая логика», обычно употребляемые и сейчас, обозначают одно и то же — современную формальную логику. Она занимается тем же, чем всегда занималась логика, — исследованием правильных способов рассуждения. Однако методы, применяемые ею, принципиально отличаются от методов, характерных для старой логики.
В России в конце прошлого — начале нынешнего века, когда научная революция в логике набрала силу, ситуация была довольно сложной. И в теории, и в практике преподавания господствовала так называемая «академическая логика», избегавшая острых проблем и постоянно подменявшая науку логику невнятно изложенной методологией науки, истолкованной к тому же по чужим и устаревшим образцам. Профессор Московского университета М. Троицкий, профессора Петербургского университета М. Владиславлев и А. Введенский старательно не замечали нового в области логики. Они пытались вернуть ее ко временам И. Канта, уверявшего, что в логике не осталось крупных проблем.
И тем не менее в России были люди, стоявшие на уровне достижений логики своего времени и внесшие в ее развитие важный вклад. Первым из них надо упомянуть, конечно, доктора астрономии Казанского университета, логика и математика П. Порецкого. Сдержанное общее отношение к математической логике, разделявшееся даже многими русскими математиками, во многом осложнило его творчество. Часть своих работ он вынужден был опубликовать за границей на французском языке. Но его идеи оказали в конечном счете существенное влияние на развитие алгебраически трактуемой логики как в нашей стране, так и за рубежом. П. Порецкий первым в России начал читать лекции по математической логике, о которой он говорил, что это «по предмету своему есть логика, а по методу математика». Созданный на основе многолетних самостоятельных исследований труд П. Порецкого «О способах решения логических равенств и об обратном способе математической логики» значительно продвинул вперед разработку алгебры логики. По характеристике советского историка логики Н. Стяжкина, работы П. Порецкого «фактически превосходят не только труды его коллег-современников, но и в части, касающейся алгебры логики, соответствующие разделы фундаментальной работы А. Уайтхеда и Б. Рассела «Principia Mathematical Исследования П. Порецкого продолжают оказывать стимулирующее влияние на развитие алгебраических теорий логики и в наши дни».
Важную роль в распространении идей математической логики у нас в стране сыграли также работы профессоров Одесского университета начала этого века Е. Буницкого и И. Слешинского. Они исследовали проблемы применимости результатов математической логики к арифметике и подчеркнули единство старой и новой (математической) логики.
Известный русский физик П. Эренфест первым высказал гипотезу о возможности применения современной ему логики в технике. В 1910 году он писал: «Символическая формулировка дает возможность «вычислять» следствия из таких сложных систем посылок, в которых при словесном изложении почти или совершенно невозможно разобраться. Дело в том, что в физике и технике действительно существуют такие сложные системы посылок. Пример: пусть имеется проект схемы проводов автоматической телефонной станции. Надо определить: 1) будет ли она правильно функционировать при любой комбинации, могущей встретиться в ходе деятельности станции; 2) не содержит ли она излишних усложнений. Каждая такая комбинация является посылкой, каждый маленький коммутатор есть логическое «или — или», воплощенное в эбоните и латуни; все вместе — система чисто качественных (сети слабого тока, поэтому не количественных) «посылок», ничего не оставляющая желать в отношении сложности и запутанности. Следует ли при решении этих вопросов раз и навсегда удовлетвориться… рутинным способом преобразования на графике? Правда ли, что, несмотря на существование уже разработанной алгебры логики, своего рода «алгебра распределительных схем» должна считаться утопией?»
В дальнейшем гипотеза П. Эренфеста получила прекрасное воплощение в теории релейно-контактных систем. Многие интересные и важные детали ее были развиты в работах советских логиков В. Шестакова, Е. Войшвилло и др.
В общем, оглядываясь назад на историю распространения математической логики, можно сказать, что лучшие русские логики всегда стремились стоять на уровне современных им мировых теорий и концепций, органически чуждаясь всякого рода логического сектантства и сепаратизма.
МОГУЩЕСТВО ИСКУССТВЕННОГО ЯЗЫКА
Старая логика пользовалась для описания мышления обычным языком, на котором повседневно общаются люди. Но он имеет целый ряд особенностей, мешающих ему, к сожалению, успешно справляться с этой задачей.
Его правила, касающиеся построения сложных выражений из простых, расплывчаты. Интуитивные критерии осмысленности утверждений ненадежны. Структура фраз скрывает реальную логическую форму. Большинство выражений многозначно.
Обычный язык, возникший как средство общения людей, претерпел долгую и противоречивую эволюцию. Многое в нем остается невыявленным, а только молчаливо предполагается.
Все это не означает, конечно, что обычный язык никуда не годен и его следует заменить во всех областях какой-то искусственной символикой. Он вполне справляется с многообразными своими функциями. Но, решая многие задачи, он лишается. способности точно передавать форму нашей мысли.
Для целей логики необходим искусственный язык, строящийся по строго сформулированным правилам. Этот язык не предназначен для общения. Он должен служить только одной задаче — выявлению логических связей наших мыслей, но решаться она должна с предельной эффективностью.
Принципы построения искусственного логического языка были разработаны в современной логике. По словам немецкого логика Г. Клауса, «создание его имело такое же значение в области мышления для техники логического вывода, какое в области производства имел переход от ручного труда к труду механизированному».
Специально созданный для целей логики язык получил название формализованного. Слова обычного языка заменяются в нем отдельными буквами и различными специальными символами. Формализованный язык — это «насквозь символический» язык Введение его означает принятие особой теории логического анализа рассуждений.
Как известно, синтаксис языка касается тех отношений между знаками языка, которые не зависят от их смысла. Правила синтаксиса — это правила образования и преобразования выражений.
Семантика языка имеет дело с отношениями между словами и вещами, языком и описываемой им действительностью.
Синтаксис говорит о том, как из простых выражений складываются более сложные, как одни последовательности знаков трансформируются в другие. Семантика интересуется смыслом выражений, их истинностью и ложностью.