Изменить стиль страницы

Самый знаменитый из этих экспериментов — опыт американского химика Стенли Миллера в 1953 году. В условиях имитации первичной атмосферы, содержащей, по предположению Миллера, аммиак, метан, водород, водяной пар, и воздействия электрических разрядов образовывались в небольших количествах аминокислоты трех видов и органические кислоты. Впоследствии опыт был признан некорректным и не имеющим ничего общего с действительностью, но он по–прежнему фигурирует в школьных учебниках.

Рис. 9. Структура ДНК и белка

Вероятность случайной сборки таких сложных биомолекул, как ДНК и белок, в строго определенной последовательности их мономеров — нулевая.

«… я восхищаюсь делами рук Твоих» img_12.jpeg
«… я восхищаюсь делами рук Твоих» img_13.jpeg

В настоящее время ученые сходятся во мнении, что первичная атмосфера содержала двуокись углерода, которая была источником кислорода, и азот. В экспериментальных условиях, имитирующих такую атмосферу, аминокислоты не возникали.

Мы здесь не будем останавливаться на фантазиях российского ученого А. И. Опарина, описанных в учебниках, о так называемых коацерватных каплях, которые представляют собой сгустки биополимеров в «питательном бульоне» и рассматривались А. И. Опариным как «предшественницы» живых клеток.

Посмотрим, на чем конкретно преткнулась гипотеза о химической эволюции и какие научные данные доказывают ее полную несостоятельность.

Вспомним, что белки (или по–другому протеины) - это полимеры, то есть цепочки, состоящие из звеньев (мономеров), в качестве которых выступают аминокислоты. Из порядка 200 известных аминокислот в белках живых организмов встречаются только 20. Самые простые белки имеют в своем составе около 50 аминокислот, но есть такие, которые содержат тысячи мономеров. Чтобы белок мог выполнять в клетке какую–то определенную функцию, последовательность аминокислот должна быть строго определенной. Замена хотя бы одной аминокислоты на другую, утрата или, наоборот, добавление аминокислотных звеньев делает белок непригодным.

Вероятность того, что случайным образом синтезируется молекула среднего белка, например, из 500 аминокислот в определенной последовательности, составляет 1 шанс из числа единица с 950 нулями. Для функционирования бактериальной клетки требуется, по меньшей мере, 2000 различных белков со строго определенной структурой. Вероятность их случайного возникновения оценивается как 1 шанс из числа единица с 40 000 нулями. А ведь кроме протеинов в клетке есть множество других биомолекул, составляющих сложнейшие структуры. Отметим для сравнения, что в организме человека насчитываются многие десятки тысяч разных видов белков. Предприняты попытки оценить вероятность случайного возникновения всех химических связей в простой бактериальной клетке: это 1 шанс из числа единица со ста миллиардами нулей. Такое число не поддается осмыслению. Трудно сказать, насколько корректны такие подсчеты, но вспомним, что в математике событие, имеющее 1 шанс из числа единица с 50 нулями, считается абсолютно невероятным. Поэтому сколько бы нулей свыше 50 не насчитывали, вывод единственный и однозначный: случайно ни биомолекулы, ни клеточные структуры, ни сами клетки образоваться не могут. Серьезные эволюционисты понимают это. И каков же их ответ? «Мы не знаем, как возникла жизнь, но не божественным сотворением». Поистине: «Сказал безумец в сердце своем: «нет Бога» (Пс. 13:1).

Вернемся к синтезу протеиновой цепочки. Самопроизвольная сборка аминокислот в белковую молекулу встречает ряд трудностей. Прежде всего, отметим, что аминокислотные звенья должны соединяться не любым способом из многих возможных, а только особой связью, так называемой пептидной, и только линейно, без разветвлений. В «первобытном бульоне» образование ее просто невозможно. Во–первых, реакция сдвигается в сторону распада полипептида до аминокислот, во–вторых, сами аминокислоты — вещества химически высокоактивные и реагировать будут предпочтительнее с другими соединениями, а не друг с другом. В химической лаборатории чтобы получить полипептид, в аминокислоте блокируют активные группы, которые не участвуют в образовании пептидной связи. Кто же их блокировал в «первобытном бульоне»?

И, наконец, еще один момент. Эволюционный сценарий случайного самопроизвольного образования белка не проходит по той причине, что в живом организме присутствуют только L–аминокислоты. Дело в том, что каждая из 20 аминокислот (кроме одной) имеет две симметричные, зеркальные L–и D–формы подобно правой и левой руке человека. Вне живого организма аминокислоты существуют в виде смеси равных количеств этих двух форм. Кто же в «первобытном бульоне» отбирал L–аминокислоты для самопроизвольного синтеза белка? «Мудрая» природа? Совершенно абсурдно думать, что случайным образом в белке могли выстроиться только L–формы аминокислот. Включение одной–единственной D–аминокислоты в полипептидную цепь делает ее нефункциональной. Строгая последовательность именно L–аминокислот — необходимое условие для формирования вторичной и третичной структуры белка, то есть особым образом укладки длинной белковой цепочки в пространстве, без чего белок не может быть активным.

Выше отмечалось, что «древняя» атмосфера Земли содержала кислород (следы его обнаружены во всех осадочных слоях). Уже это делает невозможным накопление аминокислот из–за химической агрессивности кислорода: аминокислоты просто бы разрушались. Атмосферный кислород (точнее, его озоновая форма) совершенно необходим для защиты от губительного ультрафиолетового излучения Солнца. Но даже если предположить, что кислорода в атмосфере не было, то в отсутствие озонового щита биологические молекулы были бы разрушены ультрафиолетом. Ни в той, ни в другой атмосфере биомолекулы бы не «выжили».

Итак, мы видим, что уже на уровне образования белков эволюционные воззрения терпят крах. Но это еще не все тупики для дарвинистов.

В дезоксирибонуклеиновых кислотах закодирована информация о структуре всех белковых молекул организма. Мы уже говорили о том, что информация не возникает случайно, она есть результат разумного замысла. Считается, что генетический материал одной клетки человека содержит в 3–4 раза больше информации, чем все 30 томов «Британской энциклопедии». Чтобы эта информация была осмысленной, цепочка ДНК должна содержать строгую последовательность своих мономеров — нуклеотидов (вспомним, что их 4 вида). Генетический код таков: каждой из 20 аминокислот соответствует последовательность из трех определенных нуклеотидов. Вероятность случайной сборки ДНК — нулевая. Притом что для живых клеток в структуре нуклеотидов также прослеживается феномен зеркальных форм: имеющийся в составе нуклеотидов сахар дезоксирибоза находится только в D–форме.

В живом организме биосинтез белка происходит по чрезвычайно сложному механизму: генетическая информация, записанная в ДНК с помощью четырехбуквенного алфавита (нуклеотидов), переносится посредством транспортной структуры — рибонуклеиновой кислоты (РНК), к месту сборки аминокислот — на особые клеточные органоиды, называемые рибосомами. И на всех этапах требуется множество сложных белковых молекул — ферментов (катализаторов, многократно ускоряющих течение реакций).

Таким образом, синтез протеинов не может идти без программы, записанной в ДНК, а синтез ДНК не может осуществляться без белков–ферментов. Таковы научные факты. А эволюционисты утверждают, что эти процессы в своем эволюционном становлении шли параллельно. Это абсурд. Необходимо учесть еще, что для всех реакций требуется энергия, которую организм запасает по сложному биохимическому механизму, требующему множества ферментов, которые также закодированы в ДНК. Неужели можно продолжать верить в случайное зарождение жизни? Американский биолог Эдвин Конклин: «Вероятность случайного возникновения жизни сравнима с вероятностью, что энциклопедический словарь является результатом взрыва в типографии». Английский математик и астроном Фред Хойль: «Прийти к заключению, что жизнь является результатом случайного процесса, равносильно допущению, что смерч, промчавшийся через кладбище старых автомобилей, может собрать «Боинг–747» из хлама, поднятого в воздух».