Свободные радикалы всегда имеются в организме, и их роль заключается в поедании патологических клеток, но так как они очень прожорливы, то при увеличении их количества они начинают поедать и здоровые клетки. При глубоком дыхании кислорода в организме становится значительно больше, чем надо, и он, выдавливая из крови углекислоту, нарушает их равновесное состояние в сторону уменьшения, что и приводит к спазму сосудов — основе любого заболевания.
Удивительно устроен наш организм, в котором заложены огромные возможности, в частности в системе дыхания. Еще в своей кандидатской работе я отмечал, что мы выдыхаем воздуха больше, чем вдыхаем, потому что природой в организме предусмотрен физиологический тип дыхания: чем меньше вдох и больше задержка на выдохе или медленнее выдох, тем лучше для организма.
Углекислота — это второй по значимости после кислорода важнейший регулятор и субстрат жизни. Углекислота стимулирует дыхание, способствует расширению сосудов мозга, сердца, мышц и других органов, участвует в поддержании необходимой кислотности крови, влияет на интенсивность самого газообмена, повышает резервные возможности организма и иммунной системы.
На первый взгляд кажется, что мы дышим правильно, но это не так. На самом деле у нас разбалансирован механизм кислородообес-печения клеток из-за нарушения соотношения кислорода и углекислого газа на уровне клеток. Дело в том, что, по закону Вериго, при нехватке в организме углекислого газа кислород с гемоглобином образуют прочную связь, что препятствует отдаче кислорода тканям. Известно, что только 25 % кислорода поступает в клетки, а остальной по венам возвращается обратно в клетки. Почему так происходит? Проблема в углекислом газе, который в организме образуется в огромном количестве (0,4–4 л в минуту) как один из конечных продуктов окисления (наряду с водой) питательных веществ. Причем чем больше человек испытывает физических нагрузок, тем больше производится углекислого газа. На фоне относительной обездвиженности, постоянных стрессов обмен веществ замедляется, что вызывает снижение выработки углекислоты.
Волшебство углекислого газа заключается в том, что при постоянной физиологической концентрации в клетках он способствует расширению капилляров, при этом кислорода больше поступает в межклеточное пространство и потом путем диффузии в клетки. Следует обратить ваше внимание на то, что каждая клетка имеет свой генетический код, в котором расписана вся программа ее деятельности и рабочие функции. И если клетке создать нормальные условия снабжения кислородом, водой, питанием, то она будет работать заложенное природой время. Фокус заключается в том, что дышать надо реже и неглубоко и на выдохе делать больше задержек, тем самым способствуя поддержанию количества углекислого газа в клетках на физиологическом уровне, снятию спазма с капилляров и нормализации обменных процессов в тканях.
Почему, например, горцы живут долго? Конечно, экологически чистая еда, размеренный образ жизни, постоянная работа на свежем воздухе, чистая свежая вода — все это важно. Но главное в том, что на высоте до 3 километров над уровнем моря, где находятся горные селения, процент содержания в воздухе кислорода сравнительно снижен. Так вот, именно при умеренной гипоксии (нехватке кислорода) организм начинает экономно его расходовать, клетки находятся в режиме ожидания и обходятся жестким лимитом при нормальной концентрации углекислого газа. Давно ведь замечено, что пребывание в горах значительно улучшает состояние больных, особенно с легочными заболеваниями.
В настоящее время большинство исследователей считают, что при любом заболевании возникают нарушения в дыхании тканей, и в первую очередь, за счет глубины и частоты вдохов и избытка поступающего кислорода, что снижает концентрацию углекислоты. В результате этого процесса включается мощный внутренний замок, возникает спазм, который только на короткое время снимается спазмолитиками. Действительно эффективной же в этом случае будет просто задержка дыхания, что уменьшит поступление кислорода и тем самым снизит вымывание углекислоты, с увеличением концентрации которой до нормального уровня снимется спазм и восстановится окислительно-восстановительный процесс.
В каждом заболевшем органе, как правило, находят парез нервного волокна и спазм сосудов, то есть болезней без нарушения кровоснабжения не существует. С этого начинается самоотравление клетки из-за недостаточного поступления кислорода, питательных веществ и малого оттока продуктов обмена, или, иначе: любое нарушение работы капилляров — первопричина многих заболеваний. Вот почему нормальное соотношение концентраций кислорода и углекислоты играет такую большую роль: с уменьшением глубины и частоты дыхания нормализуется количество углекислоты в организме, тем самым снимается спазм с сосудов, раскрепощаются и начинают работать клетки, уменьшается количество потребляемой пищи, так как улучшается процесс ее переработки на клеточном уровне.
Иммунная система и перекись водорода
Как мы выяснили, роль молекулярного кислорода в организме сводится к образованию атомарного кислорода, который и обеспечивает окислительно-восстановительные процессы, происходящие в клеточных структурах, и поддержание здоровья на клеточном уровне. Нарушение этого процесса и есть первопричина всех болезней. Отсюда возникает вопрос: как и что надо делать, чтобы предотвратить такое нарушение без использования химических лекарственных средств, с помощью которых можно устранить только следствие болезни, а не первопричину.
Теперь поговорим об удивительной особенности работы иммунной системы, заложенной в наш организм, в качестве одного из сильнейших средств борьбы с различной патогенной средой, характер которой не имеет значения, — об образовании клетками иммунной системы, лейкоцитами и гранулоцитами (разновидность тех же лейкоцитов), перекиси водорода.
Учитывая, что атомарный кислород вырабатывается в самом организме из воды и молекулярного кислорода через перекись водорода и озон, было решено при нарушении этого природного механизма, наблюдаемого при возникновении любого заболевания или снижении с возрастом своих резервных возможностей, использовать такое химическое вещество, как перекись водорода: наружно, перорально, в клизмах и даже внутривенно. Результаты не заставили себя ждать, тем более что методика применения перекиси водорода элементарно проста и, что не менее важно, практически ничего не стоит.
В организме перекись водорода образуется клетками иммунной системы из воды и кислорода:
2Н20 + 02=2Н202.
Разлагаясь, перекись водорода образует воду и атомарный кислород:
Н202=Н20 + '0\
Как видно, на первой стадии разложения перекиси водорода выделяется атомарный кислород, который является «ударным» звеном кислорода во всех биохимических, энергетических процессах. Именно атомарный кислород определяет все необходимые жизненные параметры организма, а точнее, поддерживает иммунную систему на уровне комплексного управления всеми процессами для создания должного физиологического режима в организме, что и делает его здоровым. При сбое этого механизма, то есть при недостатке кислорода, а его, как вы уже знаете, всегда не хватает, особенно при недостатке аллотропного (других видов, в частности той же перекиси водорода) кислорода, и возникают различные заболевания, вплоть до гибели организма. В таких случаях хорошим подспорьем для восстановления баланса активного кислорода и стимуляции окислительных процессов и собственного его выделения и является перекись водорода — это чудодейственное средство, придуманное природой в качестве защиты организма, даже когда мы ему чего-то недодаем или просто не задумываемся, как там, внутри, работает сложнейший механизм, обеспечивающий наше существование.
Следует сказать, что в биохимических, энергетических реакциях кислород в организме участвует в виде радикалов нескольких видов: свободных радикалов, у которых на орбите находится один неспа-ренный электрон, у атомарного кислорода — два, а у молекулярного — уже четыре. Помимо этого их различие заключается в том, что для образования свободных радикалов требуется гораздо меньше времени и энергии, несколько большей у атомарного и больше всего — для молекулярного, и обозначаются они следующим образом: