Изменить стиль страницы

Нам кажется, что эта проблема имеет не только научно-познавательное (теоретическое) значение, но может представлять интерес и для медицины. В связи с этим нами начаты исследования на людях по изучению элементарных компонентов невербальной формы мышления (Крушинский, Попова, 1976). Работа проводится в настоящее время в двух направлениях: во-первых, изучается феноменологическая структура логической задачи, которая может быть предъявлена как животным, так и человеку; во-вторых, изучается роль генотипа в невербальной форме мышления человека. Для решения предъявляемой задачи человек или животное должны уловить закон перемещения предмета в пространстве. Задача состоит из двух основных компонентов: необходимо на основании проб и ошибок уловить закономерность перемещения объекта в пространстве при каждом последующем предъявлении задачи; определить шаг перемещения объекта. Первый этап — улавливание направления перемещения предмета осуществляется на основе способности к экстраполяции. Второй этап — улавливание шага перемещения объекта. Для этого индивидуум должен оперировать понятием размера («больше», «меньше», «равно»). Оказалось, что улавливание шага перемещения является более трудной задачей, чем определение направления перемещения объекта.

Задача была предложена 1073 испытуемым в возрасте от 2 до 25 лет. Показано, что успех решения задачи зависит от возраста. Некоторые дети уже в возрасте от 3 лет начинают решать задачу. Постепенно доля испытуемых, решающих задачи, увеличивается и достигает к 17–20 годам 80 % (у студентов). Следует отметить, что период школьного образования не оказывает существенного влияния на кривую успеха решения задачи от возраста.

Анализ проведен на 140 парах монозиготных и дизиготных близнецов и 70 парах неродственных особей, возраст которых соответствовал возрасту близнецов.[49] Было обнаружено большое сходство в решении задач у близнецов. Статистически достоверное сходство в решении (р<0,001) наблюдается лишь в монозиготных парах. Результаты анализа полученного материала дают основание допустить роль генотипических факторов в невербальном мышлении человека.

Необходимо подчеркнуть, что одной из важнейших задач физиологогенетического исследования является экспериментальное изучение роли центральных физиологических механизмов нервной деятельности в проявлении и выражении как нормального, так и патологического поведения.

Уровень возбудимости мозга является важнейшим фактором, обусловливающим проявление и выражение различных форм поведения в фенотипе.

Несомненно, что перевозбужденный мозг — главнейший источник весьма тяжелых патологий (как нервно-психических, так и сердечно-сосудистых). Поэтому управление уровнем — возбудимости мозга является важнейшей задачей, которая может быть решена только совместными усилиями специалистов в области физиологии, медицинской генетики, патофизиологии, биохимии и фармакологии.

Использование генетических моделей, полученных на животных, явится важнейшим этапом в разработке методов управления уровнем возбудимости мозга.

Некоторые актуальные вопросы генетики поведения и высшей нервной деятельности[50]

Исследования по генетике поведения начались почти с самого начала нынешнего столетия, когда законы Менделя стали достоянием широких кругов биологов.

При этом выяснилось, что признаки поведения и особенности высшей нервной деятельности как животных, так и человека наследуются по тем же законам, по которым наследуются морфологические, физиологические и биохимические особенности организма. Они наследуются по законам Менделя. Однако чрезвычайно большая зависимость формирования поведения от внешней среды и ряда модификаторов затрудняла обнаружение путем гибридологического анализа монофакториального характера наследования особенностей поведения животных.

Тем не менее при помощи этого классического метода генетики удалось установить, что наследование некоторых нормальных и патологических форм поведения осуществляется посредством одного или двух генов.

Примером монофакториального наследования патологической формы поведения может служить различная чувствительность мышей к действию звукового раздражителя в исследованиях Коллинса и Фуллера (Collins, Fuller, 1968).

Повышенная чувствительность к звуку соответствует модели монофакториального рецессивного наследования.

Дальнейший анализ показал, что локус, контролирующий этот признак, коррелирует с VIII группой сцепления, в которую входит несколько известных локусов (Collins, 1970). Приведенные примеры показывают, что даже у млекопитающих возможен подход к выяснению хромосомной локализации генов, контролирующих определенные формы поведения.

Имеются основания считать, что эффект положения генов или другие тонкие механизмы хромосомных перестроек могут влиять на особенности поведения.

Исследования, проводимые Отделом эмбриологии Института экспериментальной медицины АМН СССР совместно с Лабораторией физиологии и генетики поведения МГУ, выявляют у мышей с транслокацией T1 ИЭМ лучшую способность к решению элементарной логической задачи, построенной на необходимости экстраполирования, чем у мышей, у которых отсутствует эта транслокация (Крушинский и др., 1976). Если это подтвердится, то значение транслокаций для популяционной генетики и эволюции может быть рассмотрено с новых позиций.

Несмотря на то что при изучении генетики поведения в отдельных случаях удается установить относительно простую зависимость между генетическим аппаратом и особенностью поведения, тем не менее в большинстве случаев фенотипическое выражение определенного акта поведения в чрезвычайно большой степени зависит от внешней среды и многообразия генетических влияний на исследуемый признак поведения (Fuller, Thompson, 1960; Крушинский, 1966; Broadhurst, Jinks, 1966; Hirsch, 1967; McClearn, DeFries, 1973).

Какова же основная причина, которая привела к тому, что большинство актов поведения находится под очень большим влиянием многообразных условий генотипических и средовых факторов? Если принять положение, что поведение является одним из тех признаков организма, посредством которых он приспосабливается к весьма широким вариациям в среде обитания, и что поведение играет большую роль в видообразовании, то можно принять и другое положение, выдвинутое выдающимся отечественным невропатологом и генетиком С. Н. Давиденковым (1947). Это положение сводится к тому, что те признаки организма, которые принимают не столь значительное участие в эволюции, как, например, группы крови человека или полосатость раковины у некоторых видов улиток, оказываются в меньшей степени подверженными многообразному влиянию генотипических факторов, чем те признаки, которые играют большую роль в видообразовании.

По поводу таких признаков С. Н. Давиденков писал следующее: «Если они подвергались творческой работе естественного отбора, они неизбежно должны были обрастать столь большим числом генов-модификаторов и столь глубоко и интимно увязываться со всем генотипом как с целым, что выявить их изолированный первоначальный эффект большей частью уже невозможно» (Давиденков, 1947. С. 81–82).

Это положение С. Н. Давиденкова, высказанное им более тридцати лет назад, вполне соответствует современным взглядам генетиков, которые считают, что поведенческие акты контролируются совокупностью ряда полигенных коадаптированных систем (Frank, 1974). Контролирование адаптивных признаков полигенными системами, несомненно, очень затрудняет применение к ним классических методов генетического анализа.

Даже больше того, при рассмотрении эволюции тех структур или функций организма, в основе формирования которых лежат полигенные системы, необходимо помнить, что их генотипическая архитектоника зависит в большей степени от генетической структуры популяции, чем от генетической природы самого признака. При генетическом анализе полигенных систем и выявлении эволюционной значимости отдельных генов встают большие трудности. Эволюционный принцип прост до тех пор, пока рассматривается пара аллелей, однако он делается чрезвычайно трудным, когда начинает учитываться генофонд в целом (Caspari, 1967).

вернуться

49

В сборе материала принимала участие Т. Батракова.

вернуться

50

Физиологическая генетика и генетика поведения. Л.: Наука, 1981. С. 6–18.