Полимеры начинают приближаться к металлам. Конечно, не по своему внутреннему строению, а по способам обработки. Уже сейчас, например, известно, что полимеры могут закаляться и отжигаться. В дальнейшем, вероятно, мы сможем осуществить и их легирование. Таким образом, семья полимеров разрастается. И ее росту нет пределов, так как вариантов образования "внутреннего построения" полимеров бесконечное множество.

Чем подтверждается этот вывод? Прежде всего последними исследованиями структуры. Раньше предполагалось, что полимер -это длинные нити, так называемый "полимерный войлок". Такое мнение было ошибочным. Органический полимер - это пачки цепей, состоящих в основном из атомов углерода, водорода, кислорода, иногда азота. Причем все вторичные структуры - ступенчатые, то есть представляют как бы стопку писчей бумаги, каждый листик которой - это одна цепь. Пачки цепей сворачиваются в ленты и плоскости. Цепи могут также сворачиваться в виде шариков.

Многообразны и различны свойства этих "шариков" и "пачек". Например, из полимеров можно выращивать кристаллы. Из любого кристаллизующегося полимера можно получить одиночные кристаллы, притом довольно большие. Это свойство сближает полимеры с минералами.

Однако мало изучить какой-либо полимер в научной лаборатории, необходимо, чтобы он стал бы полезным и необходимым человеку в повседневной жизни. Путь от ученого-химика к "потребителям", если можно так выразиться, лежит через химическое предприятие, через завод, на котором изготавливается какая-либо деталь или изделие.

Каким же должен быть этот завод?

Вероятно, он будет по внешнему виду цехов напоминать машиностроительный. Только в цехе будут специальные станки, высокопроизводительные и во много раз сложнее, чем сейчас. Ведь в их задачу будет входить не только придание формы будущему изделию, но и одновременное придание структуры.

Сейчас, к сожалению, таких станков не существует. И это в значительной степени сдерживает развитие химии высокомолекулярных соединений.

Например, в специальной форме из пластической массы был приготовлен кузов легкового автомобиля. Кузов по всем показателям превосходил изготовленный из металла. Срок его службы увеличивался в несколько раз. Однако после штамповки всегда остается много бахромы, которую приходится снимать вручную. Это не только удорожает стоимость изделия, но и делает работу малопроизводительной. С появлением специальных станков, которые обрабатывали бы пластические массы, картина резко изменится. Тогда производство станет поточным и, учитывая небольшую стоимость сырья для полимеров, изделия из них по сравнению с металлическими будут в несколько раз экономичней…

Говоря о применении высокомолекулярных соединений в науке, технике и быту, нельзя не сказать о применении полимеров в биологии и медицине.

Биологи сейчас ведут настойчивый штурм живой клетки. Они стараются проникнуть в тайну белковых превращений, которые лежат в основе жизни человека. Узнав механизм работы клетки, человек навсегда избавится от болезней, он научится изменять ее деятельность в нужном направлении, продлит свою жизнь.

Одно из направлений исследований в химии полимеров - биологическое. Ученые изучают законы образования сложных структур. Ведь клетка - это не что иное, как высокомолекулярные соединение. Закон образования полимеров поможет биологам. Он нужен для сравнения. Представим себе клетку в виде осажденной крепости. Биологи штурмуют ее на главном направлении. А химики с тыла. Общими усилиями они, в конце концов, победят "неприятеля". Сомневаться в этом - значит недооценивать человеческий разум, его безграничное стремление и познание природы.

Применение полимеров в медицине самое различное. Это и искусственные внутренние органы человека, и лекарства.

…У человека заболел зуб. Как ни странно, это его не очень волнует. Он заходит в зубопротезную мастерскую и садится в кресло. Через несколько секунд больной зуб удален, а на его место поставлен… из полимерного вещества. Новый зуб чудесно приживается и служит человеку ничуть не хуже, чем свой.

Что это, фантастика? Ничего подобного. Подобные опыты уже проводились. Правда, не все из них заканчиваются благополучно. Пока не всегда новый зуб приживается, однако успешные опыты дают право утверждать, что в конце концов эта временная трудность будет преодолена.

Сейчас проведены операции по замене больной аорты на искусственную. Аорта из пластмассы прижилась. Подобные операции не единичны.

Врачи все смелее и смелее обращаются к химикам. Они применяют искусственные сухожилия, кости, сращивают кровеносные сосуды и мечтают в будущем заменять все внутренние органы человека. С искусственными жить лучше - никогда не причиняют неприятностей! А если что-либо и нарушится в их работе, не так уж трудно поставить новые…

Такое интенсивное "вторжение" полимеров в медицину объясняется довольно просто: человеческий организм состоит из высокомолекулярных соединений. Если металл или чужеродный материал никогда не приживается в человеческом организме, то полимер всегда может найти себе "братьев по крови".

Некоторые полимеры, так называемые "физиологические вещества", найдут себе применение для изготовления лекарств.

Сейчас лекарства по своему внутреннему строению - очень простые вещества. Объясняется это тем, что их легче синтезировать. Вполне естественно, что врачи хотели бы получить более "универсальные" лекарства, значительно сократить их число. Изготовить, например, один препарат для ангины и язвы желудка, разве это не заманчиво? И опять на помощь медицине придут химики. Уже сейчас есть эффективные высокомолекулярные соединения, с помощью которых можно лечить различные болезни, однако получать их в больших количествах невозможно - нет достаточной промышленной базы.

Трудно представить даже в общих чертах будущее химии полимеров. Здесь рассказано только об отдельных путях ее развития. Однако мне хочется подчеркнуть одно: с каждым годом химия полимеров будет развиваться все стремительней. Впереди много открытий и исследований, поэтому каждый, кто придет в химическую науку, найдет в ней близкое и родное его сердцу.

Александр Яншин:

ГЕОЛОГИЯ В КОСМОСЕ

4 октября газета обязательно публиковала статью, связанную с космосом. Однажды мне пришла идея расспрашивать о значении этого события не только "ракетчиков". И в моей коллекции "интервью" появился академик А. Яншин. Он рассказал:

Сегодня исполняется годовщина со дня первого полета в космос. Это начало нового этапа - эпохи регулярных полетов в космос.

Нельзя не восхищаться этим. Нельзя не гордиться, что именно наша страна открыла человечеству путь к звездам. И вместе с тем хочется осмыслить: какие же перспективы открываются перед человечеством с выходом в космос?

Освоение космического пространства наложило свой коренной отпечаток на все отрасли науки. Пожалуй, эту мысль лучше всего можно проиллюстрировать на примере геологии -науки о Земле.

Полеты искусственных спутников уже дали геологам богатейший материал. Показания геофизических приборов, установленных на них, позволили нас судить о распространении гравитационного и магнитного полей нашей планеты с такой точностью, какая недостижима при измерениях непосредственно у поверхности Земли. Бесценный материал дали геологам измерения траекторных отклонений спутников, по которым также можно судить с распределении сил гравитационного поля Земли.

Если там много уже дали геологии полеты искусственных спутников Земли, каковы же должны быть перспективы, связанные с освоением человеком других планет Солнечной системы?

Различные планеты как космические тела находятся на разных стадиях развития. Поэтому возможность их изучить дает богатейший материал для понимания истории развития Земли. Попав на некоторые из других планет, мы можем как бы переместиться в прошлое, сможем наблюдать явления, какие на Земле происходили десятки и сотни миллионов лет назад. Ясно, что эти наблюдения помогут нам расшифровать многие страницы летописи развития Земли.