Изменить стиль страницы

Давайте посмотрим, почему.

Квантовая дрожь и пустое пространство

Если бы мне пришлось выделить одно наиболее запоминающееся свойство квантовой механики, я бы выбрал принцип неопределённости. Вероятности и волновые функции определённо обеспечивают радикально новые рамки анализа, но именно принцип неопределённости несёт в себе разрыв с классической физикой. Вспомним, что в XVII и XVIII вв. учёные были уверены, что полное описание физической реальности сводится к указанию положения и скорости каждой составляющей материи, заполняющей космос. А с появлением концепции поля в XIX в. и с её последующим применением к электромагнитным и гравитационным силам этот взгляд был дополнен включением в рассмотрение величины каждого поля — т. е. напряжённости каждого поля — и скорости изменения величины каждого поля в каждой точке пространства. Но к 1930-м гг. принцип неопределённости разрушил эту концепцию реальности, показав, что вы никогда не можете знать сразу положение и скорость частицы; вы никогда не можете знать сразу величину поля в данном месте пространства и то, как быстро величина поля изменяется. Квантовая неопределённость запрещает это.

Как мы обсуждали в предыдущей главе, из-за квантовой неопределённости микромир является царством дрожания и квантовых скачков. Ранее мы обращали внимание на порождённую неопределённостью квантовую дрожь поля инфлатона, но квантовая неопределённость имеет место для всех полей. Электромагнитное поле, поля сильного и слабого ядерных взаимодействий и гравитационное поле — все подвергаются неистовым квантовым скачкам-дрожаниям на микроскопическом масштабе. Фактически, эта дрожь полей существует даже в пространстве, которое вы нормально воспринимали бы как пустое, в пространстве, которое кажется не содержащим ни материи, ни полей. Это очень важная идея, но если вы не сталкивались с ней ранее, она, естественно, будет выглядеть загадочной. Если область пространства ничего не содержит — если это вакуум, — то не означает ли это, что там нечему дрожать? Но мы уже знаем, что концепция пустоты — тонкая вещь. Просто подумайте об океане Хиггса, который, как утверждает современная теория, пронизывает пустое пространство. Квантовая дрожь, о которой я теперь говорю, только делает понятие «ничего» ещё более тонким. Вот что я имею в виду.

В доквантовой (и дохиггсовой) физике мы объявляли некоторую область пространства совершенно пустой, если она не содержит частиц и величина каждого поля всюду в области равна нулю.[227] Теперь подумаем об этом классическом определении пустоты в свете квантового принципа неопределённости. Если бы поле имело и сохраняло нулевую величину, мы бы знали его величину — нуль, — а также скорость изменения его величины — тоже нуль. Но в соответствии с принципом неопределённости невозможно, чтобы оба эти свойства одновременно были определены. То есть, если поле в некоторый момент имеет определённую величину, нуль в нашем случае, принцип неопределённости говорит нам, что скорость его изменения совершенно случайна. А случайная скорость изменения означает, что в последующие моменты времени величина поля будет хаотически прыгать вверх и вниз, даже в месте, которое мы обычно полагаем совершенно пустым пространством. Так что интуитивное понятие пустоты как места, в котором все поля имеют и сохраняют нулевую величину, несовместимо с квантовой механикой. Величина поля может колебаться около нулевой величины, но она не может быть равной нулю во всей области более чем краткое мгновение.{228} На техническом языке физики говорят, что поля подвержены вакуумным флуктуациям.

Хаотичная природа вакуумных флуктуаций поля означает, что во всех областях, за исключением самых микроскопических, имеется так же много скачков «вверх», как и «вниз», а потому они усредняются к нулю, примерно как поверхность мрамора выглядит совершенно гладкой для невооружённого глаза, хотя электронный микроскоп обнаруживает, что она очень неровная на микроскопических масштабах. Тем не менее, хотя мы не можем увидеть эту квантовую дрожь непосредственно, более чем полстолетия назад реальность колебаний квантового поля, даже в пустом пространстве, была с несомненностью показана в простом, но фундаментальном открытии.

В 1948 г. датский физик Хендрик Казимир показал, как вакуумные флуктуации электромагнитного поля могут быть обнаружены экспериментально. Квантовая теория говорит, что колебания электромагнитного поля в пустом пространстве будут иметь различную форму, как проиллюстрировано на рис. 12.1а. Прорыв Казимира заключался в осознании того, что, разместив две обычные металлические пластины в пустой области, как показано на рис. 12.1б, можно вызвать небольшую модификацию этих вакуумных колебаний поля. А именно, квантовые уравнения показывают, что в области между пластинами некоторые типы флуктуаций будут отсутствовать (допустимы только такие флуктуации электромагнитного поля, значения которых равны нулю в месте расположения каждой пластины). Казимир проанализировал следствия такого подавления колебаний поля и обнаружил нечто совершенно необычное. Как уменьшение количества воздуха в некоторой области создаёт дисбаланс давлений (например, на большой высоте вы можете почувствовать разрежение воздуха по тому, как он оказывает меньшее давление с наружной стороны ваших барабанных перепонок), уменьшение квантовых колебаний поля между пластинами также создаёт дисбаланс давления: квантовые колебания поля между пластинами становятся чуть-чуть слабее, чем вне пластин, и этот дисбаланс толкает пластины друг к другу.

Ткань космоса: Пространство, время и текстура реальности _12.1_1.jpg
Ткань космоса: Пространство, время и текстура реальности _12.1_2.jpg

Рис. 12.1. (а) Вакуумные флуктуации электромагнитного поля. (б) Вакуумные флуктуации между двумя металлическими пластинами и они же вне пластин

Подумайте о том, насколько это странно. Вы помещаете две плоские, самые обыкновенные, незаряжённые металлические пластины в пустую область пространства, друг против друга. Когда их масса мала, гравитационное притяжение между ними настолько мало, что может быть полностью проигнорировано. Поскольку вокруг нет ничего другого, вы естественно решите, что пластины останутся неподвижными. Но расчёты Казимира показали, что произойдёт не это. Казимир пришёл к заключению, что призрачная хватка квантовых вакуумных флуктуаций будет мягко вынуждать пластины к встречному движению.

Когда Казимир впервые объявил об этом теоретическом результате, для проверки его предсказания не существовало достаточно чувствительного оборудования. Однако в течение последующего десятилетия другой датский физик Маркус Спаарней оказался в состоянии провести первые простейшие эксперименты по проверке силы Казимира, и с тех пор проводились всё более точные эксперименты. Например, в 1997 г. Стив Ламоро, тогда работавший в университете Вашингтона, подтвердил предсказания Казимира с точностью 5%.{229} (Для пластин, имеющих размер примерно с игральную карту и расположенных на расстоянии одной десятитысячной сантиметра друг от друга, сила между ними оказалась примерно равной весу одной капли росы; это показывает, насколько сложно измерить силу Казимира.) Теперь мало кто сомневается, что интуитивное представление о пустом пространстве как о статической, спокойной, лишённой событий арене совершенно не имеет оснований. Из-за квантовой неопределённости пустое пространство переполнено квантовой активностью.

Это заставило учёных значительную часть XX в. разрабатывать математику для описания такой квантовой активности как электромагнитных, так и сильных и слабых ядерных сил. Усилия даром не пропали: расчёты с использованием этой математической схемы согласуются с экспериментальными результатами с беспримерной точностью (например, расчёты влияния вакуумных флуктуаций на магнитные свойства электронов согласуются с экспериментальными результатами с точностью до одной миллиардной).{230}

вернуться

[227]

Для простоты изложения мы будем рассматривать только поля, которые достигают своей наименьшей энергии, когда их величина равна нулю. Обсуждение других полей — полей Хиггса — идентично, за исключением того, что поля колеблются вокруг ненулевой величины поля с минимальной энергией. Если вы хотите сказать, что область пространства пуста, только если там не присутствует материя и все поля отсутствуют, а не просто имеют величину нуль, смотрите примечание.{328}

вернуться

{228}

Склонный к математике читатель должен отметить, что из принципа неопределённости следует, что флуктуации энергии обратно пропорциональны временно́му разрешению наших измерений, так что чем точнее разрешение во времени, с которым мы исследуем энергию поля, тем сильнее будут флуктуации поля.

вернуться

{229}

В этом эксперименте Ламоро измерил силу Казимира на модифицированной установке, использующей притяжение между сферической линзой и кварцевой пластинкой. Позднее Джианни Каруньо, Роберто Онофрио и их сотрудники в университете Падуи поставили более сложный эксперимент, использующий исходную идею Казимира с двумя параллельными пластинами. (Сохранение пластин совершенно параллельными действительно является сложной экспериментальной проблемой.) Пока они смогли подтвердить предсказания Казимира с точностью 15%.

вернуться

{230}

Ретроспективно эти достижения также показывают, что если бы Эйнштейн не ввёл космологическую постоянную в 1917 г., квантовым физикам пришлось бы ввести собственную версию её несколькими десятилетиями позже. Как вы вспомните, космологическая постоянная является энергией, которая, как представлял Эйнштейн, заполняет всё пространство, но что является её источником, он — и современные сторонники космологической постоянной — оставил не определённым. Теперь мы понимаем, что квантовая физика заполняет пустое пространство флуктуирующими полями, и, как мы непосредственно видим благодаря открытию Казимира, результирующий микроскопический хаос полей наполняет пространство энергией. Фактически, крупнейший вызов, брошенный теоретической физике, состоит в том, чтобы показать, что совокупный вклад всех флуктуаций полей даёт полную энергию пустого пространства — полную космологическую постоянную, — которая укладывается в пределы, даваемые наблюдениями за сверхновыми, как обсуждалось в главе 10. До сегодняшнего дня никто не смог этого сделать; проведение точного анализа находится за пределами досягаемости современных теоретических методов, а приближённые вычисления дают ответы, чудовищно превосходящие то, что дают наблюдения, определённо указывая на то, что эти приближения никуда не годятся. Многие рассматривают объяснение величины космологической постоянной (равна ли она нулю, как ещё думают, или мала и отлична от нуля, как следует из инфляции и из данных по сверхновым) как одну из самых важных открытых проблем в теоретической физике.