Изменить стиль страницы

Фактически, уменьшение симметрии при возникновении океана Хиггса является ещё более широким. Выше 1015 градусов, когда поле Хиггса ещё не сконденсировалось, безмассовыми являются не только все виды фундаментальных частиц материи, но также, без сопротивления океана Хиггса, безмассовыми являются и все частицы — переносчики сил. (Сегодня W- и Z-частицы — переносчики слабого ядерного взаимодействия — имеют массы около 86 и 97 масс протона.) И, как впервые было открыто в 1960-е гг. Шелдоном Глэшоу, Стивеном Вайнбергом и Абдусом Саламом, безмассовость частиц всех сил сопровождалась другой, потрясающе красивой симметрией.

В конце 1800-х гг. Максвелл понял, что электричество и магнетизм, хотя они некогда воспринимались как две совершенно разные силы, на самом деле являются различными составляющими одной и той же — электромагнитной силы (см. главу 3). Его труд показал, что электричество и магнетизм дополняют друг друга; они представляют собой инь и ян более симметричного единого целого. Глэшоу, Салам и Вайнберг открыли следующую главу в этой истории объединения. Они поняли, что до того, как возник океан Хиггса, не только все частицы сил имели одинаковую массу — нуль, — но и фотоны, и W- и Z-частицы были идентичны ещё и в существенно другом смысле.{183} Точно так же, как снежинка не меняется при поворотах, которые меняют местами положения её лучей, физические процессы в отсутствие океана Хиггса не будут меняться при взаимозаменах частиц электромагнитных и слабых ядерных сил — при определённых взаимных заменах фотонов и W- и Z-частиц. И так же, как нечувствительность снежинки к поворотам является выражением симметрии (вращательной симметрии), нечувствительность к заменам частиц, переносящих взаимодействия, также отражает симметрию, которая по техническим причинам называется калибровочной симметрией. Она имеет глубокие следствия. Поскольку эти частицы являются переносчиками соответствующих сил, симметрия между ними означает, что имеется симметрия и между силами. Следовательно, при достаточно высокой температуре, при такой температуре, которая испарила бы сегодняшний заполненный полем Хиггса вакуум, нет различия между слабой ядерной силой и электромагнитной силой. То есть при достаточно высокой температуре океан Хиггса испаряется; когда это происходит, испаряется и разница между слабыми ядерными и электромагнитными силами.

Глэшоу, Вайнберг и Салам обобщили открытие Максвелла столетней давности, показав, что электромагнитные силы и слабые ядерные силы на самом деле являются частью одной и той же силы. Они объединили описание этих двух сил в то, что сейчас называется электрослабой силой.

Симметрия между электромагнитными и слабыми ядерными силами не проявляется сегодня, поскольку при охлаждении Вселенной возник Хиггсов океан и, что существенно, фотоны и W- и Z-частицы взаимодействуют с конденсированным полем Хиггса по-разному. Фотоны проносятся через океан Хиггса так же легко, как второсортный киноартист легко прошёл бы сквозь папарацци, и поэтому остаются безмассовыми. Однако W- и Z-частицы, как Билл Клинтон и Мадонна, с трудом прокладывают себе путь, приобретая массы в 86 и 97 масс протона соответственно. (Замечание: Эта аналогия не соблюдает масштабы.) Вот почему электромагнитные силы и слабые ядерные силы столь различны в мире вокруг нас. Фундаментальная симметрия между ними «нарушена» или скрыта океаном Хиггса.

Это действительно результат, захватывающий дух. Две силы, которые выглядят совсем разными при сегодняшних температурах, — электромагнитная сила, отвечающая за свет, электричество и магнитное взаимодействие, и слабая ядерная сила, отвечающая за радиоактивный распад, — на фундаментальном уровне являются частью одной и той же силы и становятся различными только вследствие ненулевого поля Хиггса, скрывающего симметрию между ними. Таким образом, то, о чём мы обычно думаем как о пустом пространстве (как о вакууме, о пустоте), играет центральную роль в проявлении вещей в мире такими, какие они есть. Только при испарении вакуума, при достаточно высокой температуре, когда поле Хиггса испаряется, т. е. приобретает нулевое среднее значение во всём пространстве, полная симметрия, лежащая в основании законов природы, стновится явной.

Когда Глэшоу, Вайнберг и Салам разработали эти идеи, W- и Z-частицы ещё не были открыты экспериментально. Только сильная вера этих физиков в силу теории и красоту симметрии дала им уверенность для продвижения вперёд. Их отвага увенчалась успехом. Через некоторое время W- и Z-частицы были открыты, и электрослабая теория была подтверждена экспериментально. Глэшоу, Вайнберг и Салам разглядели за тем, что лежит на поверхности, — проникли взором сквозь туман пустоты — проявление глубокой и тонкой симметрии, охватывающей две из четырёх сил природы. В 1979 г. им была присуждена Нобелевская премия за успешное объединение слабых ядерных сил и электромагнетизма.

Великое объединение

Когда я был студентом первого курса в колледже, я часто встречался с моим руководителем, физиком Говардом Джорджи. Обычно мне было нечего ему сказать, но это практически и не требовалось. Всегда было что-то, чем Джорджи хотелось поделиться с заинтересованными студентами. Как-то раз Джорджи был особенно возбуждён, и он быстро и воодушевлённо говорил в течение часа, несколько раз заполнив доску символами и уравнениями. Всё это время я с энтузиазмом кивал головой. Но, откровенно говоря, я не понял ни слова. Годами позже я осознал, что Джорджи говорил мне о планах проверки его открытия, которое было названо великим объединением.

Великое объединение ставит вопрос, который естественным образом следует из успеха электрослабого объединения: если две силы природы в ранней Вселенной являлись частью единого целого, то может ли быть, что при ещё более высоких температурах и в ещё более ранние времена совершенно аналогично могут испариться различия между тремя или, возможно, всеми четырьмя силами, создав ещё бо́льшую симметрию? Это приводит к интригующей возможности, что на самом деле может быть существует одна единственная фундаментальная сила природы, которая через серию космологических фазовых переходов выкристаллизовалась в четыре кажущиеся различными силы, которые нам известны в настоящее время. В 1974 г. Джорджи й Глэшоу предложили первую теорию, позволяющую пройти часть пути до полного единства. Ихтеория великого объединения вместе с более поздними результатами Джорджи, Хелен Куинн и Вайнберга предполагала, что три из четырёх сил — сильные, слабые и электромагнитные — являлись частью единой силы, когда температура превышала 10 млрд млрд млрд (1028) градусов, — в несколько тысяч миллиардов миллиардов раз больше температуры в центре Солнца, — это экстремальные условия, которые существовали через 10−35 с после Большого взрыва. Выше этой температуры, предположили эти физики, фотоны, глюоны сильного взаимодействия, точно так же, как W- и Z-частицы, можно было свободно заменять друг на друга — это более сильная калибровочная симметрия, чем в электрослабой теории, — без каких-либо наблюдаемых последствий. Джорджи и Глэшоу, таким образом, предположили, что при таких высоких энергиях и температурах имеется полная симметрия между тремя видами частиц — переносчиков негравитационных сил, и потому имеется полная симметрия среди трёх негравитационных сил.{184}

Теория великого объединения Глэшоу и Джорджи также говорит, что мы не наблюдаем эту симметрию в мире вокруг нас, — сильные ядерные силы, которые удерживают вместе протоны и нейтроны в атомных ядрах, кажутся совершенно отличными от слабых или электромагнитных сил, — поскольку, когда температура упала ниже 1028 градусов, в игру вступил другой вид поля Хиггса. Это поле Хиггса называется полем Хиггса великого объединения (или, коротко, Хиггсом великого объединения). (Всякий раз, когда названия могут привести к путанице, поле Хиггса, относящееся к электрослабому объединению, называется электрослабым Хиггсом). Аналогично случаю его электрослабого родственника, Хиггс великого объединения сильно флуктуирует при температуре выше 1028 градусов, но расчёты предполагают, что он конденсируется в ненулевую величину, когда Вселенная охлаждается ниже этой температуры. И, как и с электрослабым Хиггсом, когда возник этот Хиггсов океан великого объединения, Вселенная прошла через фазовый переход с сопровождающим его понижением симметрии. В этом случае, поскольку океан Хиггса великого объединения оказывает различное влияние на глюоны и на другие частицы, сильное взаимодействие отщепилось от электрослабого взаимодействия, создав две различающиеся негравитационные силы там, где раньше была одна. Через крошечную долю секунды, после падения температуры ещё на миллиарды и миллиарды градусов, сконденсировался электрослабый Хиггс, заставив разделиться слабые и электромагнитные силы.

вернуться

{183}

Склонный к математике читатель должен отметить, что фотоны, W-, и Z-бозоны описываются в электрослабой теории как принадлежащие к присоединённому представлению группы SU(2) × U(1), а потому преобразовываются под действием этой группы. Более того, уравнения электрослабой теории полностью симметричны относительно преобразований этой группы, и в этом смысле мы описываем частицы сил как взаимосвязанные. Более точно, в электрослабой теории фотон является определённой смесью калибровочного бозона, проявляющего явную U(1)-симметрию, и U(1)-подгруппы группы SU(2); таким образом, он тесно связан со слабыми калибровочными бозонами. Однако вследствие структуры группы, имеющей вид произведения двух групп, четыре бозона (на самом деле имеются два W-бозона с противоположными электрическими зарядами) не полностью смешиваются под её действием. В этом смысле слабое и электромагнитное взаимодействия являются частью единой математической структуры, но не настолько сильно унифицированы, как это могло бы быть. Если включить ещё и сильные взаимодействия, группа пополняется путём включения множителя SU(3) — «цветная группа» SU(3) — и тогда эта группа, имея три независимых сомножителя, SU(3) × SU(2) × U(1), только ещё раз подчёркивает отсутствие полного объединения. Такова часть мотивировки великого объединения, обсуждаемого в следующем разделе: великое объединение ищет единственную, полупростую группу Ли — группу, состоящую из единственного сомножителя, — которая описывает силы на больших масштабах энергии.

вернуться

{184}

Склонный к математике читатель должен заметить, что великая теория объединения Джорджи и Глэшоу базировалась на группе SU(5), которая включала SU(3), группу, ассоциирующуюся с сильным ядерным взаимодействием, а также SU(2) × U(1), группу, ассоциирующуюся с электрослабым взаимодействием. В дальнейшем физики изучали следствия других потенциальных групп великого объединения, таких как SO(10) и E6.