Изменить стиль страницы

Запутанность и специальная теория относительности: альтернативный подход

Так ли это? Полностью ли разрешён потенциальный конфликт между нелокальностью квантовой механики и специальной теорией относительности? Вероятно, да. На основе вышеприведённых доводов большинство физиков подводит итог, говоря, что результаты Аспекта по запутанным частицам находятся в состоянии мирного сосуществования со специальной теорией относительности. Короче говоря, специальная теория относительности каким-то чудом выживает. Многих физиков это удовлетворяет, но у других возникает беспокоящее ощущение, что в этой истории ещё не поставлена окончательная точка.

На инстинктивном уровне я всегда разделял точку зрения «мирного сосуществования», но нельзя отрицать, что проблема тонкая. В конце концов, не важно, какие общие слова произносятся по этому поводу, подчёркивается ли непереносимость информации, но факт остаётся фактом: две далеко разнесённые в пространстве частицы, каждая из которых подчиняется вероятностным законам квантовой механики, каким-то образом остаются «на связи» друг с другом, так что одна мгновенно повторяет всё то, что делает другая. И это упорно наводит на мысль, что нечто быстрее света действует между ними.

К чему же мы приходим? Нет «железного», общепринятого ответа. Некоторые физики и философы считают, что наше внимание направлено немного не туда: суть теории относительности, как они верно отмечают, состоит не столько в том, что свет устанавливает предельный порог скорости, как в том, что скорость света одинакова для всех наблюдателей, независимо от скорости их относительного движения.{84} Эти исследователи подчёркивают, что главный принцип специальной теории относительности состоит в том, что ни одна точка отсчёта ничем не выделяется по сравнению со всеми остальными. Таким образом, они полагают (и многие с этим согласны), что если равноправное положение всех наблюдателей, двигающихся друг относительно друга с постоянной скоростью, удастся согласовать с экспериментальными данными, касающимися запутанных частиц, то напряжение, связанное со специальной теорией относительности, будет снято.{85} Но этого не так-то легко достичь. Чтобы понять, с какими проблемами приходится сталкиваться, давайте посмотрим, как объясняется результат Аспекта в старых добрых учебниках по квантовой механике.

Согласно стандартной квантовой механике, проводя измерение и обнаруживая частицу в каком-то месте, мы тем самым вынуждаем волну вероятности измениться: весь диапазон возможных исходов сводится к одному конкретному результату, полученному в ходе измерения, как проиллюстрировано на рис. 4.7. Физики говорят, что акт измерения заставляет коллапсироватъ волну вероятности, и они предсказывают, что чем больше волна вероятности в какой-то выбранной точке, тем больше шансов, что волна сколлапсирует к этой точке, т. е. с тем большей вероятностью частица будет обнаружена именно в этой точке. В стандартной трактовке коллапс происходит мгновенно во всей Вселенной: как только вы где-то обнаружили частицу, так вероятность её обнаружения в любом другом месте сразу же падает до нуля, и это отражается в немедленном коллапсе волны вероятности.

Ткань космоса: Пространство, время и текстура реальности _4.7.jpg

Рис. 4.7. Когда частица обнаруживается в каком-то месте, вероятность её обнаружения в любом другом месте падает до нуля, увеличиваясь до 100% в месте обнаружения

Когда в эксперименте Аспекта устанавливается, что спин одного фотона (летящего влево), направлен, скажем, по часовой стрелке относительно некоторой оси, то это вызывает коллапс волны вероятности во всём пространстве, мгновенно устанавливая вероятность обнаружения направления спина против часовой стрелки в нуль. Поскольку этот коллапс происходит везде, то он происходит и в месте нахождения второго фотона (связанного с первым и летящего вправо). Таким образом, сколь бы далеко от первого фотона ни находился второй, его волна вероятности мгновенно затрагивается изменением волны вероятности первого фотона, что даёт возможность второму фотону мгновенно принять тот же спин относительно выбранной оси. Значит, в стандартной трактовке квантовой механики именно это мгновенное изменение волны вероятности ответственно за влияние, происходящее со скоростью, превышающей скорость света.

Математический аппарат квантовой механики позволяет перевести на точный язык цифр это качественное описание. Можно подсчитать (детали можно найти в примечании{86}), как часто будут совпадать показания левого и правого детекторов в эксперименте Аспекта (когда оси, относительно которых проводится измерение, выбираются случайным образом и независимо друг от друга), если принять механизм дальнодействия, возникающий из-за коллапса волн вероятности. Тогда оказывается, что показания детекторов должны совпасть точно в 50% случаев (а не более чем в 50% случаев согласно гипотезе о локальной Вселенной, использованной в работе Эйнштейна–Подольского–Розена). С впечатляющей точностью как раз это обнаружил Аспект в своих экспериментах — именно 50%-е совпадение. Стандартная квантовая механика прекрасно согласуется с опытными данными.

Это впечатляющий успех. Тем не менее есть одна загвоздка. За более чем семьдесят лет никто так и не понял, как происходит коллапс волны вероятности и происходит ли он вообще. За всё это время предположение о коллапсе волны вероятности подтверждалось убедительной связью между вероятностными предсказаниями квантовой теории и конкретными экспериментальными данными. Но это предположение начинено загадками. Одна из них состоит в том, что коллапс не следует из математического аппарата квантовой механики; он должен вводиться вручную, и нет признаваемого всеми или оправданного экспериментально пути, как это сделать. Другая загадка: как так получается, что в результате обнаружения электрона детектором в Нью-Йорке волна вероятности мгновенно падает до нуля в галактике Андромеды? Конечно, обнаружив частицу в Нью-Йорке, вы уже не можете обнаружить её в иной галактике, но какой неизведанный механизм обеспечивает такую невиданную оперативность? Как, говоря попросту, часть волны вероятности в галактике Андромеды или где бы там ни было мгновенно «узнаёт», что ей надо мгновенно упасть до нуля?{87}

В главе 7 мы поднимем эту проблему измерения в квантовой механике (и увидим, что есть предложения, позволяющие вообще избавиться от представления о коллапсе волн вероятности), но пока нам достаточно отметить, что, как говорилось в главе 3, события, одновременные в одной системе отсчёта, не одновременны в другой системе отсчёта, двигающейся относительно первой. (Вспомните Щекотку и Царапку, синхронизирующих часы в движущемся поезде.) Так что если согласно одному наблюдателю волна вероятности претерпевает коллапс во всём пространстве одновременно, она не одновременно сколлапсирует во всём пространстве с точки зрения другого наблюдателя, двигающегося относительно первого. В действительности, в зависимости от направления движения, одни наблюдатели скажут, что первым был измерен левый фотон, тогда как другие отметят, что правый фотон был измерен первым, и никто из этих наблюдателей не может быть признан неправым. Следовательно, если бы представление о коллапсе волн вероятности было бы верным, то невозможно было бы установить, какое измерение — правого или левого фотона — повлияло на другое. Таким образом, из всех двигающихся с постоянной скоростью систем отсчёта коллапс волн вероятности выбирает одну особую систему отсчёта — ту, относительно которой коллапс происходит одновременно во всём пространстве, и измерения левым и правым детектором происходят в один момент времени. Но выбор одной особой системы отсчёта порождает значительные проблемы с принципом равноправности всех систем отсчёта в специальной теории относительности. Чтобы обойти эту проблему, выдвигались различные предложения, но до сих пор неясно, решает ли какое-нибудь из них эту проблему.{88}

вернуться

{84}

Специальная теория относительности запрещает всему, что когда-либо двигалось медленнее скорости света, пересекать барьер скорости света. Но, строго говоря, специальная теория относительности не запрещает чему-то всегда двигаться со скоростью, превышающей скорость света. Гипотетические частицы такого сорта называются тахионами. Большинство физиков считают, что тахионы не существуют, но другим нравится тешить себя возможностью их существования. Однако, по большей части из-за странных свойств, которые эти частицы имели бы согласно уравнениям специальной теории относительности, никто не нашёл для них полезного применения — даже гипотетически. В настоящее время теории, в которых появляются тахионы, обычно выглядят страдающими от нестабильности.

вернуться

{85}

Склонный к математике читатель должен отметить: по сути, специальная теория относительности утверждает, что законы физики должны быть инвариантными относительно преобразований Лоренца, т. е. инвариантными относительно SO(3,1)-преобразования координат пространства Минковского. Следовательно, квантовая механика будет согласована со специальной теорией относительности, если её можно сформулировать так, что она будет инвариантна относительно преобразований Лоренца. В настоящее время релятивистская квантовая механика и релятивистская квантовая теория поля далеко продвинулись по направлению к этой цели, но пока ещё нет полного согласия в том, решается ли в них проблема квантового измерения инвариантным относительно преобразования Лоренца образом. Например, в релятивистской квантовой теории поля можно рассчитать амплитуды вероятности и вероятности исхода различных экспериментов полностью Лоренц-инвариантным способом. Но стандартная трактовка спотыкается на описании, каким же образом конкретный результат измерения возникает из всего спектра квантовых возможностей — т. е. что же происходит в процессе измерения. Это особенно важная проблема для запутывания как явления, которое зависит от того, что делает экспериментатор, — от акта измерения характеристик одной из запутанных частиц. Более детальное обсуждение можно найти в книге: Maudlin T. Quantum Non-locality and Relativity. Oxford: Blackwell, 2002.

вернуться

{86}

Для склонного к математике читателя привожу соответствующий расчёт. Допустим, спин измеряется относительно трёх осей: вертикальной и двух, отклонённых от вертикали на угол 120° по и против часовой стрелки соответственно (полдень, четыре и восемь часов на циферблате часов соответственно). Пусть точно между двумя детекторами возникает пара электронов в так называемом синглетном состоянии. В этом состоянии суммарный спин двух электронов всегда равен нулю, так что если спин одного из электронов оказывается направленным вверх, то спин другого электрона обязательно будет направлен вниз. (Вспомните, что ради простоты я раньше рассматривал ситуацию, когда спины электронов всегда совпадают, а не противоположны. Но это совершенно не важно: вы можете представить, что детекторы откалиброваны противоположным образом, так что один из них всегда указывает на противоположное направление по отношению к тому, что есть на самом деле.) Элементарные рассуждения из квантовой механики показывают, что если угол между осями измерения спина на двух детекторах составляет θ, то вероятность того, что их показания окажутся противоположными, равна cos2(θ/2). Таким образом, если оси детекторов направлены одинаково (θ = 0), то их показания всегда противоположны (это отвечает утверждению основного текста книги, что показания всегда одинаковы — помните о перекалибровке одного из датчиков), а если угол между их осями составляет +120° или −120°, то вероятность регистрации ими противоположных спинов составляет cos2(±60°) = 1/4. Если же оси детекторов выбираются случайным образом и независимо друг от друга, то в 1/3 случаев их направления совпадут, а в 2/3 случаев — нет. Итого, ожидаемая вероятность обнаружения противоположных спинов равна (1/3) ∙ 1 + (2/3) ∙ (1/4) = 1/2, что и обнаруживается в эксперименте.

Вам может показаться странным, что предположение о локальности Вселенной ведёт к более высокой корреляции спина (больше 50%), чем в традиционном подходе квантовой механики, допускающем дальнодействие посредством мгновенного коллапса волны вероятности (ровно 50%). Вы могли бы подумать, что дальнодействующее запутывание должно приводить к большей корреляции. Фактически, так оно и есть. Подумайте вот над чем: с результатом лишь 50% для корреляции по всем измерениям квантовая механика гарантирует 100%-ю корреляцию результатов в случае одинаковой направленности осей детекторов. А в локальной Вселенной Эйнштейна-Подольского-Розена, чтобы гарантировать 100%-е согласие показаний для однонаправленных осей детекторов, требуется 55%-я корреляция по всем измерениям. Значит, грубо говоря, в локальной Вселенной 50%-я корреляция по всем измерениям дала бы менее чем 100%-ю корреляцию для одинаково направленных осей, т. е. корреляция получается меньшей, чем в нелокальной квантовой Вселенной.

вернуться

{87}

Вы могли бы подумать, что мгновенный коллапс волны вероятности с самого начала нарушает предел скорости, устанавливаемый светом, и тем самым вызывает конфликт со специальной теорией относительности. И если волны вероятности были бы действительно подобны волнам на поверхности воды, то конфликт был бы обеспечен. Тот факт, что волна вероятности внезапно падает до нуля на бескрайнем пространстве, был бы гораздо более шокирующим, чем если бы вся вода Мирового океана вдруг бы мгновенно застыла и перестала двигаться. Но, как утверждают сторонники квантовой механики, волны вероятности не подобны волнам на поверхности воды. Хотя волна вероятности описывает материю, но сама по себе она не материальна. Световой же барьер относится только к материальным объектам, чьё движение можно непосредственно видеть, чувствовать, обнаруживать. Если волна вероятности электрона упала до нуля в галактике Андромеды, то это просто означает, что андромедянский физик наверняка не сможет обнаружить у себя этот электрон. Никакое наблюдение в галактике Андромеды не обнаружит внезапного изменения волны вероятности, связанного с тем, что электрон уже обнаружен в Нью-Йорке. Нет никакого конфликта со специальной теорией относительности, так как сам электрон не перемещался из одного места в другое быстрее света. И, как можно видеть, происходит лишь обнаружение электрона в Нью-Йорке, ничего более. Скорость электрона даже не упоминалась в дискуссии. Таким образом, хотя схема мгновенного коллапса вероятности несёт с собой загадки и проблемы (они подробнее обсуждаются в главе 7), но она не обязательно подразумевает конфликт со специальной теорией относительности.

вернуться

{88}

Некоторые из этих предложений обсуждаются в книге: Maudlin T. Quantum Non-locality and Relativity.