Изменить стиль страницы

Легко выявить причину расхождения этого вывода с тем, что мы нашли, рассуждая о воздухе в тапперуэровском контейнере (когда мы установили, что энтропия пропорциональна объёму контейнера, а не площади его поверхности): поскольку мы предположили, что воздух однородно распределяется внутри контейнера, то тем самым мы игнорировали гравитацию; ведь когда гравитация существенна, происходит сгущение. Игнорировать гравитацию можно в случае низкой плотности частиц, но при большой энтропии плотность высока, так что гравитация существенна, и перестаёт быть справедливым рассуждение, применённое к тапперуэровскому контейнеру. Экстремальные условия требуют учёта гравитации, что и приводит к тому, что максимально возможное количество энтропии, содержащейся в заданной области пространства, пропорционально площади её поверхности, а не её объёму.

Хорошо, но почему это должно нас интересовать? На это есть две причины.

Во-первых, существование предела энтропии даёт ещё одно указание на то, что ультрамикроскопическое пространство имеет атомизированную структуру. Согласно Бекенштейну и Хокингу, если вообразить, что на плоскости горизонта событий чёрной дыры расчерчена шахматная доска с клетками размера планковской длины (так что каждая «планковская клетка» имеет площадь 10−66 см2), то энтропия чёрной дыры равна количеству таких клеток, уместившихся на горизонте событий.{314} Отсюда неизбежен вывод: планковская клетка является минимальным, фундаментальным элементом пространства, и каждая такая клетка несёт минимальный, единичный элемент энтропии. Это значит, что ничего, даже в принципе, не может происходить внутри планковской клетки, поскольку любое перемещение является потенциальным источником беспорядка, для создания которого требуется более чем один элемент энтропии в пределах планковской клетки. Таким образом, с совсем другой точки зрения мы снова пришли к представлению о существовании сущностного пространственного элемента.{315}

Во-вторых, верхний предел энтропии в заданной области пространства является для физика критической, почти священной величиной. Чтобы понять причину этого, вообразите, что вы помогаете психиатру, и ваша работа состоит в том, чтобы детально записывать всё, что происходит в группе гиперактивных детей. Каждое утро вы молитесь, чтобы дети как можно спокойнее себя вели, поскольку чем больший бедлам они устраивают, тем труднее ваша работа. Причина очень проста, но стоит явно сказать: чем более беспорядочно ведут себя дети, тем за большим количеством вещей вам требуется следить. Вселенная бросает физику во многом тот же вызов. Фундаментальная физическая теория должна описывать всё, что происходит — или могло было произойти, даже в принципе, — в заданной области пространства. И, как и в случае с детьми, чем больший беспорядок может содержать область пространства — даже в принципе — тем больше должна уметь отслеживать теория. Таким образом, максимальная энтропия в области пространства может служить своеобразной «лакмусовой бумажкой»: физики полагают, что по-настоящему фундаментальная теория — это та, которая полностью согласуется с максимальной энтропией в любой заданной области пространства. Теория должна соответствовать природе с такой точностью, чтобы быть в состоянии точно отследить максимально возможный беспорядок в любой области пространства, не больше и не меньше.

Если бы рассуждения, касавшиеся тапперуэровского контейнера, были бы универсально справедливы, то фундаментальная теория должна была бы учитывать «объёмное» количество беспорядка в любой области. Но поскольку эти рассуждения оказываются неверными при учёте гравитации — а фундаментальная теория должна включать гравитацию, то фундаментальной теории требуется принимать во внимание лишь «поверхностный» беспорядок в любой области. И на паре примеров мы уже показали, что для больших областей «поверхностный» беспорядок гораздо меньше «объёмного».

Таким образом, результат Бекенштейна и Хокинга говорит нам о том, что теория, включающая гравитацию, в некотором смысле проще теории, не включающей её. В ней меньше «степеней свободы» (меньше составляющих, которые могут меняться и тем самым вносить свой вклад в беспорядок), которые теория должна описывать. Этот вывод интересен сам по себе, но если сделать ещё один шаг вперёд, то он приведёт нас к кое-чему чрезвычайно необычному. Если максимум энтропии в любой заданной области пространства пропорционален площади поверхности этой области, а не её объёму, тогда, возможно, подлинные, фундаментальные степени свободы — атрибуты, способные вызывать беспорядок, — на самом деле пребывают на поверхности области, а не внутри неё. То есть возможно, что реальные физические процессы Вселенной происходят на тонкой удалённой поверхности, окружающей нас, а всё, что мы видим и переживаем, является попросту проекцией тех процессов. Иными словами, возможно, что Вселенная подобна голограмме.

Это очень странная идея, но, как мы сейчас увидим, она недавно получила значительную поддержку.

Является ли Вселенная голограммой?

Голограмма — это двумерный кусок пластика со специальной гравировкой, который при освещении подходящим лазерным светом проецирует трёхмерное изображение.{316} В начале 1990-х гг. лауреат Нобелевской премии голландский физик Герард ’т Хофт и Леонард Сасскинд, один из основателей теории струн, предположили, что сама Вселенная может функционировать подобно голограмме. Они выдвинули потрясающую идею, что всё, что происходит в трёх измерениях повседневной жизни, может быть голографической проекцией физических процессов, происходящих на удалённой двумерной поверхности. С их новой, совершенно непривычной для нас точки зрения, мы и всё, что мы делаем или видим, сродни голографическим образам. Тогда как Платон считал обычные ощущения отображающими лишь тень реальности, голографический принцип говорит похожее, но переворачивает эту метафору с ног на голову. Тени — то, что плоское и, следовательно, пребывает на двумерной поверхности, — реальны, тогда как то, что кажется нам более богато структурированными объектами более высокой размерности (мы сами и мир вокруг нас) является эфемерной проекцией этих теней.[317]

Несмотря на то что это чрезвычайно странная идея, и её роль в окончательном понимании пространства-времени далеко не ясна, так называемый голографический принцип ’т Хофта и Сасскинда имеет под собой веские основания. Ведь, как мы узнали в последнем разделе, максимальное количество энтропии, которое может вмещать определённая область пространства, пропорционально площади её поверхности, а не её объёму. Поэтому естественно предположить, что наиболее фундаментальные ингредиенты Вселенной, её самые базисные степени свободы — элементы, которые могут быть носителями энтропии Вселенной почти как страницы романа «Война и мир» несут свою энтропию, — пребывают на граничной поверхности, а не внутри Вселенной. То, что мы переживаем в «объёме» Вселенной, определяется тем, что происходит на граничной поверхности, аналогично тому, как трёхмерное голографическое изображение определяется информацией, закодированной в плоской голографической маске. Законы физики уподобляются вселенскому лазеру, освещающему реальные космические процессы, происходящие на тонкой удалённой поверхности, и генерирующему голографические иллюзии повседневной жизни.

Мы ещё не понимаем, как этот голографический принцип может быть реализован в реальном мире. Одна из проблем состоит в том, что обычно Вселенная представляется либо простирающейся до бесконечности, либо замкнутой на себя подобно сфере или экрану компьютерной игры (как в главе 8) и, следовательно, не имеющей каких-либо краёв или границ. Так где же может находиться «граничная голографическая поверхность»? Более того, нам определённо видится, что физические процессы находятся под нашим контролем прямо здесь в «объёме» Вселенной. Нам не кажется, что нечто на неуловимой границе как-то распоряжается тем, что происходит здесь, внутри. Означает ли голографический принцип, что наше ощущение управления и автономии иллюзорно? Или же лучше думать о голографическом принципе как о выражающем некоторую дуальность, позволяющую в зависимости от вкуса (а не от реальной физики) выбирать привычное описание, в котором фундаментальные законы действуют здесь, в «объёме» (что согласуется с нашей интуицией и нашим восприятием), либо необычное описание, в котором фундаментальные физические процессы происходят на некой границе Вселенной, и при этом каждая точка зрения будет одинаково законной? Эти существенные вопросы до сих пор остаются дискуссионными.

вернуться

{314}

Точнее говоря, энтропия чёрной дыры равна площади её горизонта событий в планковских единицах, помноженной на константу Больцмана и разделённой на 4.

вернуться

{315}

Математически подкованный читатель может припомнить из примечаний к главе 8, что существует и другая концепция горизонта — космического горизонта, — представляющего собой поверхность, отделяющую объекты, с которыми наблюдатель в принципе не может сообщаться. Предполагается, что такой горизонт также поддерживает энтропию, пропорциональную площади его поверхности.

вернуться

{316}

В 1971 г. английский физик Деннис Габор (венгр по происхождению) был удостоен Нобелевской премии за открытие голографии. Стремясь улучшить разрешающую способность электронных микроскопов, Габор в 1940-х гг. искал способ записывать больше информации, закодированной в световых волнах, отражающихся от объекта. Например, фотоаппарат регистрирует лишь интенсивность световых волн: места с высокой интенсивностью света на фотографии получаются более яркими, а места с низкой интенсивностью света получаются более тёмными. Но Габор и многие другие физики понимали, что интенсивность — это только часть информации, переносимой световыми волнами. Мы видели это, к примеру, на рис. 4.3б: хотя интерференционная картина отражает интенсивность (амплитуду) света (волны с более высокой амплитудой дают более яркие участки картины), но сама интерференционная картина возникает из-за наложения волн, проходящих через каждую щель и достигающих своего максимума, минимума и промежуточных значений своей амплитуды на разных участках экрана. Эту информацию называют фазовой информацией: говорят, что две световых волны находятся в фазе в данной точке, если они усиливают друг друга (они одновременно достигают максимума или минимума), или в противофазе, если они гасят друг друга (одна достигает максимума, тогда как другая достигает минимума в той же точке); и, вообще говоря, в каждой точке есть разность фаз волн, промежуточная между этими двумя крайностями, приводящая к частичному усилению или гашению результирующей световой волны в каждой точке экрана. Таким образом, интерференционная картина несёт в себе запись фазовой информации интерферирующих световых волн.

Габор придумал установку для записи на специальной плёнке как интенсивности, так и фазовой информации света, рассеянного объектом. Переводя на современный язык, его подход был сродни экспериментальной установке на рис. 7.1, за исключением того, что один из двух лазерных лучей отражался объектом, расположенным на его пути к экрану. Если экран покрыт плёнкой, содержащей подходящий эмульсионный слой, то на плёнке запишется интерференционная картина (в виде мельчайших линий) наложения двух лучей, один из которых беспрепятственно попал на экран, а другой был рассеян объектом. Интерференционная картина содержит информацию как об интенсивности отражённого света, так и о сдвиге фаз между двумя световыми лучами. Изобретение Габора внесло существенный вклад в научные исследования, позволив значительно усовершенствовать широкий круг измерительных методов. Но для широкой публики самым выдающимся достижением стала разработка художественных и промышленных голограмм.

Обычные фотографии выглядят плоскими из-за записи только интенсивности света. Для передачи глубины нужна фазовая информация. Причина в том, что по мере движения световой волны её амплитуда меняется от минимума к максимуму и обратно, так что фазовая информация — или, точнее, информация о сдвиге фаз между световыми лучами, отражёнными соседними частями объекта, — запечатлевает разницу расстояний, проходимых световыми лучами от разных частей объекта. Например, если вы смотрите на кошку, сидящую прямо перед вами, то её глаза находятся от вас чуть дальше, чем её нос, и эта разница отражается в сдвиге фаз между световыми лучами, отражёнными от разных частей её мордочки. Освещая затем голограмму лазерным светом, мы задействуем фазовую информацию, записанную на голограмме, и тем самым добавляем глубину к изображению. Мы все видели результаты: потрясающие трёхмерные изображения, порождаемые двумерным куском пластика. Хотя заметим, что наши глаза не используют эту фазовую информацию для передачи глубины картины. Вместо этого они используют параллакс: небольшая разница в углах, под которыми свет от одной и той же точки доходит до правого и левого глаза, даёт нужную информацию, которую мозг затем переводит в расстояние до этой точки. Вот почему, к примеру, если человек слепнет на один глаз (или просто прикрывает его), то ощущение глубины ухудшается.

вернуться

[317]

Если вам не хочется переписывать Платона, то модель мира на бране дает голографическую версию мира, в которой тени вновь занимают надлежащее место. Представим, что мы живём на 3-бране, окружающей четырёхмерную область (подобно тому как двумерная кожица яблока окружает его трёхмерную внутренность). В такой модели мира голографический принцип скажет, что наши трёхмерные ощущения являются тенями четырёхмерной физики, происходящей в области, окружённой нашей браной.