Изменить стиль страницы

Elsewhere, however, the misuse of the oceans has been more wanton than inadvertent. Many fishermen “fin” sharks-that is, slice their fins off, then dump them back into the water to die. In 1998, shark fins sold in the Far East for over $250 a pound. A bowl of shark fin soup retailed in Tokyo for $100. The World Wildlife Fund estimated in 1994 that the number of sharks killed each year was between 40 million and 70 million.

As of 1995, some 37,000 industrial-sized fishing ships, plus about a million smaller boats, were between them taking twice as many fish from the sea as they had just twenty-five years earlier. Trawlers are sometimes now as big as cruise ships and haul behind them nets big enough to hold a dozen jumbo jets. Some even use spotter planes to locate shoals of fish from the air.

It is estimated that about a quarter of every fishing net hauled up contains “by-catch”-fish that can’t be landed because they are too small or of the wrong type or caught in the wrong season. As one observer told the Economist: “We’re still in the Dark Ages. We just drop a net down and see what comes up.” Perhaps as much as twenty-two million metric tons of such unwanted fish are dumped back in the sea each year, mostly in the form of corpses. For every pound of shrimp harvested, about four pounds of fish and other marine creatures are destroyed.

Large areas of the North Sea floor are dragged clean by beam trawlers as many as seven times a year, a degree of disturbance that no ecosystem can withstand. At least two-thirds of species in the North Sea, by many estimates, are being overfished. Across the Atlantic things are no better. Halibut once abounded in such numbers off New England that individual boats could land twenty thousand pounds of it in a day. Now halibut is all but extinct off the northeast coast of North America.

Nothing, however, compares with the fate of cod. In the late fifteenth century, the explorer John Cabot found cod in incredible numbers on the eastern banks of North America-shallow areas of water popular with bottom-feeding fish like cod. Some of these banks were vast. Georges Banks off Massachusetts is bigger than the state it abuts. The Grand Banks off Newfoundland is bigger still and for centuries was always dense with cod. They were thought to be inexhaustible. Of course they were anything but.

By 1960, the number of spawning cod in the north Atlantic had fallen to an estimated 1.6 million metric tons. By 1990 this had sunk to 22,000 metric tons. In commercial terms, the cod were extinct. “Fishermen,” wrote Mark Kurlansky in his fascinating history, Cod, “had caught them all.” The cod may have lost the western Atlantic forever. In 1992, cod fishing was stopped altogether on the Grand Banks, but as of last autumn, according to a report in Nature, stocks had not staged a comeback. Kurlansky notes that the fish of fish fillets and fish sticks was originally cod, but then was replaced by haddock, then by redfish, and lately by Pacific pollock. These days, he notes drily, “fish” is “whatever is left.”

Much the same can be said of many other seafoods. In the New England fisheries off Rhode Island, it was once routine to haul in lobsters weighing twenty pounds. Sometimes they reached thirty pounds. Left unmolested, lobsters can live for decades-as much as seventy years, it is thought-and they never stop growing. Nowadays few lobsters weigh more than two pounds on capture. “Biologists,” according to the New York Times, “estimate that 90 percent of lobsters are caught within a year after they reach the legal minimum size at about age six.” Despite declining catches, New England fishermen continue to receive state and federal tax incentives that encourage them-in some cases all but compel them-to acquire bigger boats and to harvest the seas more intensively. Today fishermen of Massachusetts are reduced to fishing the hideous hagfish, for which there is a slight market in the Far East, but even their numbers are now falling.

We are remarkably ignorant of the dynamics that rule life in the sea. While marine life is poorer than it ought to be in areas that have been overfished, in some naturally impoverished waters there is far more life than there ought to be. The southern oceans around Antarctica produce only about 3 percent of the world’s phytoplankton-far too little, it would seem, to support a complex ecosystem, and yet it does. Crab-eater seals are not a species of animal that most of us have heard of, but they may actually be the second most numerous large species of animal on Earth, after humans. As many as fifteen million of them may live on the pack ice around Antarctica. There are also perhaps two million Weddel seals, at least half a million emperor penguins, and maybe as many as four million Adélie penguins. The food chain is thus hopelessly top heavy, but somehow it works. Remarkably no one knows how.

All this is a very roundabout way of making the point that we know very little about Earth’s biggest system. But then, as we shall see in the pages remaining to us, once you start talking about life, there is a great deal we don’t know, not least how it got going in the first place.

19 THE RISE OF LIFE

IN 1953, STANLEY Miller, a graduate student at the University of Chicago, took two flasks-one containing a little water to represent a primeval ocean, the other holding a mixture of methane, ammonia, and hydrogen sulphide gases to represent Earth’s early atmosphere-connected them with rubber tubes, and introduced some electrical sparks as a stand-in for lightning. After a few days, the water in the flasks had turned green and yellow in a hearty broth of amino acids, fatty acids, sugars, and other organic compounds. “If God didn’t do it this way,” observed Miller’s delighted supervisor, the Nobel laureate Harold Urey, “He missed a good bet.”

Press reports of the time made it sound as if about all that was needed now was for somebody to give the whole a good shake and life would crawl out. As time has shown, it wasn’t nearly so simple. Despite half a century of further study, we are no nearer to synthesizing life today than we were in 1953 and much further away from thinking we can. Scientists are now pretty certain that the early atmosphere was nothing like as primed for development as Miller and Urey’s gaseous stew, but rather was a much less reactive blend of nitrogen and carbon dioxide. Repeating Miller’s experiments with these more challenging inputs has so far produced only one fairly primitive amino acid. At all events, creating amino acids is not really the problem. The problem is proteins.

Proteins are what you get when you string amino acids together, and we need a lot of them. No one really knows, but there may be as many as a million types of protein in the human body, and each one is a little miracle. By all the laws of probability proteins shouldn’t exist. To make a protein you need to assemble amino acids (which I am obliged by long tradition to refer to here as “the building blocks of life”) in a particular order, in much the same way that you assemble letters in a particular order to spell a word. The problem is that words in the amino acid alphabet are often exceedingly long. To spell collagen, the name of a common type of protein, you need to arrange eight letters in the right order. But to make collagen, you need to arrange 1,055 amino acids in precisely the right sequence. But-and here’s an obvious but crucial point-you don’t make it. It makes itself, spontaneously, without direction, and this is where the unlikelihoods come in.

The chances of a 1,055-sequence molecule like collagen spontaneously self-assembling are, frankly, nil. It just isn’t going to happen. To grasp what a long shot its existence is, visualize a standard Las Vegas slot machine but broadened greatly-to about ninety feet, to be precise-to accommodate 1,055 spinning wheels instead of the usual three or four, and with twenty symbols on each wheel (one for each common amino acid).[35] How long would you have to pull the handle before all 1,055 symbols came up in the right order? Effectively forever. Even if you reduced the number of spinning wheels to two hundred, which is actually a more typical number of amino acids for a protein, the odds against all two hundred coming up in a prescribed sequence are 1 in 10260 (that is a 1 followed by 260 zeroes). That in itself is a larger number than all the atoms in the universe.