Изменить стиль страницы

Соленые спектры

Когда электрон изменяет скорость или направление движения, он испускает электромагнитное излучение. В таком случае, считает Дедал, при прохождении электрического тока по извилистому проводнику должен излучаться свет. Частота излучаемого «света» в такой установке будет равна числу извилин проводника, проходимых электроном за секунду, и, следовательно, она лежит гораздо ниже границы видимого диапазона спектра. Даже если бы электроны двигались со скоростью света (как, к примеру, в длинной, извилистой формы радиолампе под действием ускоряющего напряжения), длина волны испускаемого излучения была бы равна длине одной извилины. Чтобы получить таким способом видимый свет, понадобилась бы лампа с извилинами, меньшими длины волны видимого света. Дедал предлагает воспользоваться кристаллами поваренной соли. В кристаллической решетке соли положительные ионы натрия и отрицательные ионы хлора чередуются с интервалом 0,28 нм, и электроны в пучке, направленном вдоль поверхности кристалла, будут отклоняться то в одну, то в другую сторону под действием полей, создаваемых чередующимися положительными и отрицательными зарядами. По расчетам Дедала, заполненная солью радиолампа должна излучать видимый свет уже при разности потенциалов между электродами в 0,05 В.

Изобретения Дедала img120.png

КПД такой лампы невелик, так как электроны касаются поверхности кристалла только в отдельных участках своего пути. Поэтому Дедал ищет пористый материал с ионной структурой, внутри которого электроны вынуждены были бы двигаться по извилистой траектории. Для этой цели больше всего подходят цеолиты, широко применяемые в ионообменниках и молекулярных ситах. В лабиринте их ячеистой структуры электрон будет двигаться по траектории с извилинами длиной 2 нм. Дедал присоединяет электроды к кускам цеолита, запаивает их в стеклянные баллоны и откачивает воздух. В результате получается «лабиринтная радиолампа». В этой лампе электроны движутся зигзагообразно от катода к аноду, испуская электромагнитное излучение на всем пути. Видимый свет будет излучаться уже при напряжении 3 В, причем такая лампа способна перестраиваться по спектру в очень широком диапазоне. В зависимости от приложенного напряжения, определяющего скорость движения электронов внутри цеолита, лампа излучает свет с любой длиной волны: от инфракрасного до ультрафиолетового[42]. Способность цеолампы изменять свой цвет с той же частотой, с какой изменяется управляющее напряжение, обеспечивает ей множество полезных применений в технике и в быту. При питании обычным переменным напряжением от сети цвет лампы будет казаться постоянным, так как глаз не в состоянии различить его изменения с частотой 50 Гц. Однако этот цвет легко изменять, управляя величиной или формой питающего напряжения. Особенно эффектно это свойство может использоваться в театральных постановках и на эстраде. В частности, Дедал надеется, что цеолампы помогут «живым» концертам одержать верх в конкуренции с звукозаписью. Цеолампа, управляемая через усилитель сигналом от музыкального инструмента, будет действовать как цветовой стробоскоп. Например, цвет струны, освещенной цеолампой, будет изменяться в фазе с ее собственными колебаниями. Скрипки, барабаны и тарелки станут переливаться всеми цветами радуги.

New Scientist, July 25, 1974

Изобретения Дедала img121.png

Звучащая тарелка переливается всеми цветами радуги: от фиолетового в верхнем положении до красного — в нижнем. В действительности же наличие высших гармоник приведет к еще более красочным зрелищным эффектам.

Из записной книжки Дедала

Электрон, имеющий массу m и заряд е, ускоряясь за счет разности потенциалов Е, приобретает скорость v, которая определяется из уравнения Ee = 1/2v2. Пусть этот электрон проходит через кристаллическую решетку с периодом l. Чтобы электрон «вилял» с частотой v, он должен проходить v периодов решетки в секунду, т. е. двигаться со скоростью v=vl. Соответствующая разность потенциалов равна E = 1/2mv2/e = mv2t2/2e = kv2t2; при m = 9,11×10-31 кг и e = 1,60×10-19 Кл находим k = 2,8×10-12 кг/Кл.

Таким образом, чтобы получить желтый свет с частотой v = 500 ТГц, направляя электроны вдоль поверхности кристалла соли с периодом решетки l = 0,28 нм, необходима разность потенциалов Е = 2,8×10-12 × (500×1012)2 × (0,28×10-9)2 = 0,054 В. Но это слишком мало, чтобы обеспечить достаточно интенсивную эмиссию электронов из обычных катодов.

Цеолиты выглядят гораздо более привлекательно. Они прозрачны, и внутри цеолита электроны движутся в извилистом «объемном» лабиринте, а не вдоль поверхности.

«Период решетки» l здесь составляет около 2 нм, соответственно и значения разности потенциалов получаются более приемлемые. Красному свету (400 ТГц) соответствует E=1,8 В, желтому (500 ТГц) — 2,8 В, голубому (600 ТГц) — 4 В, фиолетовому (750 ТГц) — 6,3 В. Подняв напряжение до нескольких киловольт, можно выйти в область дальнего ультрафиолета, однако в ИК-области напряжения будут слишком малы, чтобы обеспечить достаточную эмиссию электронов. Поэтому цеолампу скорее можно считать удобным перестраиваемым источником излучения видимого и ультрафиолетового диапазона.

Комментарий Дедала

Это изобретение не блещет новизной, как мне казалось вначале. Позднее я обнаружил, что аналогичный принцип используется в генераторе длинноволнового ИК-излучения Смита — Парселла (Physical Review, 92, 1953, p. 1069) В этом приборе электронный луч направляется вдоль поверхности дифракционной решетки с большой плотностью штрихов. Однако расстояние между штрихами дифракционной решети гораздо больше, чем период решетки цеолита поэтому источник Смита — Парселла пригодер только для дальней ИК-области. Кроме того излучение здесь генерируется только на поверхности, в то время как цеолампа генерирует свет во всем своем объеме. 

Двоичные биоритмы

Внутри каждого из нас «тикают» биологические часы, управляющие цикличностью нашего сна и бодрствования (см. [11], [12]). Этот суточный ритм обычно синхронизирован со сменой дня и ночи, но не абсолютно постоянен. Он может нарушаться, например, при перелете из одного часового пояса в другой. Во время полярной ночи или полярного дня продолжительность «суточного цикла» также может изменяться. У Дедала возникла мысль, что продолжительность биологических циклов определяется частотой пульса, как ход часов определяется частотой колебаний маятника, и теперь он пытается проверить свою идею. Самый простой способ деления — это деление на 2; 17 последовательных делений числа сердечных сокращений на 2 дают частоту, очень хорошо соответствующую суточному ритму. Дедал утверждает, что развитие и старение организма — естественные биологические периоды человеческой жизни — определяются через суточный ритм по точно такому же принципу. Так, 12 последовательных делений суточного ритма на 2 начиная от момента рождения, определяют наступление зрелости; разделив на 2 еще раз, мы получим срок наступления менопаузы у женщин, еще одно деление на 2 обычно оказывается роковым. Самое интересное заключается в том, что большинство делителей частоты может быть привязано не к основной частоте задающего генератора, а к ее первой гармонике — тогда выходная частота увеличивается вдвое. Наоборот, если привязать их к половинной частоте задающего генератора, то выходная частота уменьшится вдвое. Таким образом, хотя суточный биоритм решительно сопротивляется попыткам несколько ускорить или замедлить его, увеличить или уменьшить его вдвое будет совсем нетрудно[43].

вернуться

42

Аналогичный принцип возбуждения электромагнитного излучения используется в генераторных лампах СВЧ диапазона: магнетронах и клистронах. — Прим. ред. 

вернуться

43

На крупных птицефермах нередко используют искусственные 12-часовые сутки: «день» и «иочь» длятся по шесть часов. При таком режиме куры несутся в два раза чаще. — Прим. ред.