Изменить стиль страницы

  Вопрос о целочисленных решениях различного вида уравнений также восходит к древности. Простейшим уравнением в целых числах является линейное уравнение аХ + bY = с , где a , b и с — попарно взаимно простые целые числа. С помощью алгоритма Евклида находится решение уравнения аХ + bY = 1, из которого затем получаются все решения первоначального уравнения. Другим уравнением в целых числах является уравнение X 2 + Y 2 = Z 2 (решение Х = 3, Y = 4, Z = 5 связано с именем Пифагора), все целочисленные решения которого выписаны в «Началах» (кн. X, предложение 29) X = r 2 —q 2 , Y = 2rq , Z = r 2 +q 2 , где r и q — целые числа. Евклиду было известно также и уравнение аХ 2 +1= Y 2 , названное впоследствии Пелля уравнением . В «Началах» (кн. X, предложение 9) Евклид показал, как находить все его решения, исходя из наименьшего, для случая а = 2. Систематическое изложение теории известных к тому времени уравнений в целых числах дано Диофантом в его «Арифметике» (середина 3 в. н. э.). Эта книга сыграла большую роль в дальнейшем развитии той части Ч. т., которая занимается решением уравнений в целых числах, называемых теперь диофантовыми уравнениями .

  Следующий этап в развитии Ч. т. связан с именем П. Ферма , которому принадлежит ряд выдающихся открытий в теории диофантовых уравнений и в теории, связанной с делимостью целых чисел. Им была выдвинута гипотеза, получившая название Ферма великая теорема , и доказана теорема, известная как Ферма малая теорема , которая играет важную роль в теории сравнений и её позднейших обобщениях. Продолжая исследования Ферма по теории делимости чисел, Л. Эйлер доказал теорему, обобщающую малую теорему Ферма. Ему принадлежат также и первые доказательства великой теоремы Ферма для показателя n = 3.

  К началу 18 в. в науке о целых числах накопилось много фактов, позволивших создать стройные теории и общие методы решения задач Ч. т.

  Л. Эйлер был первым из математиков, кто стал создавать общие методы и применять др. разделы математики, в частности математический анализ, к решению задач Ч. т. Исследуя вопрос о числе решений линейных уравнений вида

a 1 X 1 +... + ап Хп = N ,

  где a 1 ,..., an — натуральные числа, в целых неотрицательных числах X 1 ,... , Xn , Л. Эйлер построил производящую функцию Ф (z ) от переменной z , коэффициенты которой при разложении по степеням z равняются числу решений указанного уравнения. Функция Ф (z ) определяется как формальное произведение рядов

Большая Советская Энциклопедия (ЧИ) i-images-185479787.png
, …,
Большая Советская Энциклопедия (ЧИ) i-images-109995237.png

  т. е. Ф (z ) = Ф 1 (z ). ... . Фк (z ), каждый из которых сходится при ½z ½ < 1 и имеет достаточно простой вид, являясь суммой членов бесконечной геометрической прогрессии:

Большая Советская Энциклопедия (ЧИ) i-images-133050095.png
, …,
Большая Советская Энциклопедия (ЧИ) i-images-160574594.png

  Следовательно,

Большая Советская Энциклопедия (ЧИ) i-images-148879789.png

  причём I (N ) число решений изучаемого уравнения. Метод производящих функций Эйлера послужил истоком кругового метода Харди—Литлвуда, далеко идущим развитием которого, в свою очередь, явился метод тригонометрических сумм И. М. Виноградова .

  Другой проблемой Ч. т., стимулировавшей создание мощного метода, была проблема простых чисел. Л. Эйлер, доказывая теорему Евклида о бесконечности числа простых чисел, рассмотрел произведение по всем простым числам р :

Большая Советская Энциклопедия (ЧИ) i-images-130380115.png

  при s > 1. Это произведение сходится, и если его раскрыть, то в силу однозначности разложения натуральных чисел на простые сомножители получается, что оно равняется сумме ряда

Большая Советская Энциклопедия (ЧИ) i-images-172661598.png

откуда следует тождество Эйлера:

Большая Советская Энциклопедия (ЧИ) i-images-188007346.png
, s > 1.

  Так как при s = 1 ряд справа расходится (гармонический ряд), то из тождества Эйлера следует теорема Евклида. Эта идея Л. Эйлера легла в основу позднейших теорий дзета-функции . Л. Эйлеру и Х. Гольдбаху принадлежат первые постановки аддитивных (т. е. связанных со сложением) задач с простыми числами.

  К середине 19 в. в основном было построено здание Ч. т., что связано с именами К. Гаусса , Ж. Лагранжа , А. Лежандра , П. Дирихле , П. Л. Чебышева , Ж. Лиувилля , Э. Куммера .

  К. Гаусс создаёт теорию сравнений, называемую иначе арифметикой остаточных классов, с помощью которой были доказаны теорема о том, что простое число является суммой двух квадратов тогда и только тогда, когда оно имеет вид 4n + 1, и теорема о представимости каждого натурального числа суммой четырёх квадратов целых чисел. Кроме того, теория сравнений привела к важным понятиям теоретико-числового характера и тригонометрической суммы. Простейшим характером является Лежандра символ .

  К. Гаусс изучил свойства квадратичных вычетов и невычетов. Основной теоремой в этом круге вопросов является т. н. квадратичный закон взаимности, при доказательстве которого К. Гаусс рассмотрел конечные суммы вида

Большая Советская Энциклопедия (ЧИ) i-images-194225702.png

0 < a , р — 1, а — целое.

  Суммы такого вида и их обобщения стали называть тригонометрическими, т.к. в силу формулы Эйлера ei j = cosj ± i sinj они могут быть представлены в виде суммы синусов и косинусов.

  К. Гаусс, а затем П. Дирихле, продолжая исследования Л. Эйлера, создали теорию квадратичных форм, другими словами, — теорию о представлении натуральных чисел формами вида ax 2 + 2bxy + су 2 , где а , b , с — целые числа.

  К. Гаусс и П. Дирихле первыми стали рассматривать проблему о количестве целых точек в областях на плоскости. К. Гаусс доказал, что число целых точек в круге X 2 +Y 2 £ R 2 равно pR 2 + O (R ), а П. Дирихле, в свою очередь, доказал, что число целых точек с положительными координатами под гиперболой xy = N равно

Большая Советская Энциклопедия (ЧИ) i-images-129596814.png

где СЭйлера постоянная . Обобщения этих двух предложений, а также нахождение наилучших возможных остатков в написанных формулах (проблема целых точек в круге Гаусса и проблема делителей Дирихле) послужили источником большой главы Ч. т.