Изменить стиль страницы

Спикулы (в астрономии)

Спи'кулы, отдельные выступы, видимые на краю солнечного диска во время солнечных затмений или при наблюдениях в монохроматическом свете, например в свете линии водорода На (см. Солнце). С. простираются в солнечную корону до высоты 6—10 тыс. км, их диаметр 200—2000 км. Ср. время жизни С. составляет 5—7 мин, скорости подъёма 20—30 км/сек, скорости внутренних движений 5—10 км/сек. Температура С. в нижней части — около 8000 К, в верхней — около 16 000 К. Концентрация меняется с высотой от 2•1011 до 3•1010 атомов в см3. На Солнце одновременно существуют сотни тысяч С., которые возникают преимущественно в спокойных областях поверхности Солнца на границах ячеек хромосферной сетки.

Спилит-кератофировая формация

Спили'т-кератофи'ровая форма'ция, комплекс вулканогенных альбитизированных пород — спилитов, кератофиров, их туфов и туфобрекчий, образовавшихся в результате подводных вулканических излияний на ранних стадиях формирования первичных геосинклинальных прогибов. Для С.-к. ф. типично широкое развитие шаровых лав; в туфах могут встречаться следы морской фауны. Характерное изменение пород С.-к. ф., приводящее к хлоритизации стекла и альбитизации, связывают с метаморфизмом в условиях верхов зеленокаменной фации (см. Фации метаморфизма).

  С.-к. ф. часто является важным компонентом офиолитовых толщ (см. Офиолиты).

Спилиты

Спили'ты (от греч. spilos — пятно, крапинка), палеотипные базальтовые горные породы, в которых полевой шпат представлен вторичным альбитом; образовались в результате подводных излияний. Структура С. микролитовая, реже диабазовая; образована узкими длинными микролитами альбитизированного плагиоклаза, промежутки между которыми заполнены хлоритом и рудным минералом. С. вместе с кератофирами входят в состав т. н. спилит-кератофировой формации геосинклинальной стадии развития подвижных поясов земной коры.

Спилок

Спи'лок, слой дермы, полученный при двоении (разделении на слои) полуфабриката в производстве кожи. Различают С. лицевой, средний и мездровый (или бахтармяный). Из тонкого лицевого С. производят фотокожу или галантерейную кожу. Лицевой С. сравнительно большой толщины и средний С. служат для получения кожи, используемой в основном для изготовления обуви. Из бахтармяного С. вырабатывают велюр для обуви и одежды, а также кожи хромового дубления для верха обуви и юфть, имеющие искусственную лицевую поверхность. Мелкий С. и спилковую обрезь (откраиваемые тонкие края) используют для приготовления технического желатина, клея и др. продуктов растворения коллагена.

Спин

Спин (от англ. spin — вращаться, вертеться.), собственный момент количества движения элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. (При введении понятия «С.» предполагалось, что электрон можно рассматривать как «вращающийся волчок», а его С. — как характеристику такого вращения, — отсюда название «С.».) С. называется также собственный момент количества движения атомного ядра (и иногда атома); в этом случае С. определяется как векторная сумма (вычисленная по правилам сложения моментов в квантовой механике) С. элементарных частиц, образующих систему, и орбитальных моментов этих обусловленных их движением системы (см. Ядро атомное).

  С. измеряется в единицах Планка постоянной

Большая Советская Энциклопедия (СП) i-images-199550947.png
 и равен
Большая Советская Энциклопедия (СП) i-images-139795827.png
, где J — характерное для каждого сорта частиц целое (в т. ч. нулевое) или полуцелое положительное число, называемое спиновым квантовым числом (обычно его называют просто С.). Соответственно говорят, что частица обладает целым или полуцелым С. Например, С. электрона, протона, нейтрона, нейтрино, так же как и их античастиц, в единицах
Большая Советская Энциклопедия (СП) i-images-158783834.png
 равен 1/2, С. - и К-мезонов — 0, С. фотона равен 1. Хотя у фотона (как и у нейтрино) нельзя измерить собственный момент количества движения, т. к. нет системы отсчёта, в которой фотон покоится, однако в квантовой электродинамике доказывается, что полный момент фотона в произвольной системе отсчёта не может быть меньше 1; это даёт основание приписать фотону С. 1. Наличие у нейтрино С. 1/2 вытекает, например, из закона сохранения момента количества движения в процессе бета-распада.

  Проекция С. на любое фиксированное направление z в пространстве может принимать значения J, J—1, ..., —J. Т. о., частица со С. J может находиться в 2J + 1 спиновых состояниях (при J = 1/2 — в двух состояниях), что эквивалентно наличию у неё дополнительной внутренней степени свободы. Квадрат вектора С., согласно квантовой механике, равен

Большая Советская Энциклопедия (СП) i-images-116701967.png
. Со С. частицы, обладающей ненулевой массой покоя, связан спиновый магнитный момент
Большая Советская Энциклопедия (СП) i-images-197465011.png
, где коэффициент g — магнитомеханическое отношение.

  Концепция С. была введена в физику в 1925 Дж. Уленбеком и С. Гаудсмитом, предположившими (на основе анализа спектроскопических данных) существование у электрона собственного механического момента

Большая Советская Энциклопедия (СП) i-images-106763954.png
 и связанного с ним (спинового) магнитного момента, равного магнетону Бора
Большая Советская Энциклопедия (СП) i-images-167924294.png
 (где е и m — заряд и масса электрона, с — скорость света). Т. о., для С. электрона отношение магнитного момента к механическому равно g = е/mс и с точки зрения классической электродинамики является аномальным: для орбитального движения электрона и для любого движения классической системы заряженных частиц с данным отношением е/m оно в 2 раза меньше и равно е/2.

  Учёт С. электрона позволил В. Паули сформулировать принцип запрета, утверждающий, что в произвольной физической системе не может быть двух электронов, находящихся в одном и том же квантовом состоянии (см. Паули принцип). Наличие у электрона С. 1/2 объяснило мультиплетную структуру атомных спектров (тонкую структуру), особенности расщепления спектральных линий в магнитных полях (т. н. аномальный Зеемана эффект), порядок заполнения электронных оболочек в многоэлектронных атомах (а следовательно, и закономерности периодической системы элементов), явление ферромагнетизма и многие др. явления.