Изменить стиль страницы
423 утяжеление C, S, N
C S 2
CO 2 NO
232
42—3 ¯ ¯

  Изучение вариаций состава стабильных изотопов позволяет решать одну из важнейших задач геохимии — восстановление истории атомов, путей их миграции в течение геол. процессов. Так, выделение 4 He и 3 He, а также других изотопов нейтральных газов при вулканич. извержениях, особенно в областях срединно-океанич. хребтов, позволяет изучать глубинные процессы, идущие в мантии Земли. Испарение водных масс с поверхности океанов и морей сопровождается разделением изотопов. В водяном паре изотопный состав водорода (1 H/2 H) и кислорода (16 O/18 O) легче, чем в морской воде. Пары воды содержат преим. 1 H2 O, а более тяжелая молекула воды (2 H2 O) обогащает океанич. воду. При конденсации паров воды снова происходит разделение изотопов, и первые капли дождя содержат более «тяжёлую» воду, чем последующие. Наиболее «лёгкая» вода кристаллизуется в виде снега и льда в полярных областях, например в Антарктике, где содержание 2 H в различных слоях снега и льда зависит от того, в каком сезоне года они накапливались. Пресные воды легче морских, и их изотопный состав иногда имеет сезонные колебания. При изотопном обмене между разными компонентами устанавливается равновесие реакции, например:

Большая Советская Энциклопедия (ИЗ) i-images-169296254.png
. Так, образование карбонатов в условиях термодинамич. равновесия с раствором сопровождается смещением изотопного состава кислорода. Величина этого смещения зависит от температуры. Например, наибольшее обогащение карбоната кальция (CaCO3 ) изотопом 16 O происходит при осаждении CaCO3 в холодной воде. Зависимость фракционирования изотопов от температуры, при которой протекает реакция, была положена в основу палеотермометрического метода; так, изучение изотопного состава кислорода известковых скелетов ископаемых морских организмов позволяет определять температуры древних морей. Метод настолько чувствителен, что по кольцам роста раковин устанавливаются сезонные колебания температуры древних морей.

  Немалую роль в изучении геол. процессов играют изотопы серы. Изотопный состав серы в горных породах и минералах Земли подвержен значит, колебаниям. За стандарт изотопного состава серы принимается сера метеоритов. Обычно измеряются вариации в отношениях наиболее распространённых изотопов 32 S/34 S. Осн. процесс изотопного фракционирования серы связан с перераспределением изотопов между окисленными (сульфатами) и восстановленными (сульфидами) соединениями серы. Изотопное фракционирование в геол. процессах могло начаться только после появления окисленных соединений серы, т. е. после появления на Земле свободного кислорода. Поэтому, изучая изотопный состав серы древних отложений, можно определить время формирования кислородной атмосферы Земли. Важным механизмом разделения изотопов серы является восстановление сульфатов. В условиях низких температур восстановление обычно идёт с помощью сульфатредуцирующих бактерий. Образующийся сероводород обогащается лёгким изотопом серы, а оставшийся сульфат утяжеляется. Вся сера сульфидных соединений прошла стадию биогенного окисления, в результате чего изотопный состав серы, например, океанич. сульфатов утяжелён на неск. % по сравнению с серой метеоритов. Эта величина служит важной планетарной константой. Изотопный состав серы месторождений сульфидов цветных тяжёлых металлов позволяет восстанавливать историю атомов серы до момента их фиксации в рудах и решать вопрос об источнике рудного вещества. В частности, выясняется большая роль в рудообразовании серы, которая прошла стадию редукции сульфатов. Установлено, что в магматич. процессы часто вовлекается вещество осадочных пород.

  По изотопным отношениям углерода 12 C/13 C выделяются два вида соединений. Одним свойственно повышенное содержание тяжёлого углерода (d 13 C~О + ), например углерод осадочных карбонатных отложений; другим — лёгкого (d 13 C ~ —20, —40о /оо ), например углерод нефти, горючих газов, совр. организмов и т. п. При образовании алмазов, карбонатитов в мантии Земли происходит фракционирование изотопного состава углерода. Изотопный состав углерода алмазов и карбонатитов отличается от углерода, например, карбонатов и одинаков в разных точках земного шара. Изучение изотопного состава углерода позволяет ближе подойти к решению вопроса о происхождении нефти, газа, алмазов, углеводородных соединений в магматич. породах, графита в древних метаморфич. толщах.

  Методы изотопных исследований — новая развивающаяся область геологии. В последние годы обнаружены колебания в изотопном составе В, Mg, Cu, Si и некоторых др. элементов. Изучение геол. значения этих колебаний — задача будущего.

  А. П. Виноградов.

Изотопные эффекты

Изото'пные эффе'кты, изотопические эффекты, различия в свойствах изотопов данного элемента или в свойствах соединений, отличающихся изотопным составом, обусловленные разницей их атомных масс. Неодинаковые свойства изотопов, определяемые не массой, а другими характеристиками атомного ядра (проявляющиеся в радиоактивном распаде и т. п.), обычно не относятся к И. э.

  Разница в массах изотопов обусловливает различие масс молекул, их моментов инерции, прочности соответствующих химических связей. Это приводит как к неравномерному распределению изотопов между химическими соединениями при достижении равновесия изотопного обмена (термодинамические И. э.), так и к неодинаковым скоростям одной и той же химической реакции, протекающей с участием разных изотопных форм реагирующих соединений (кинетические И. э.). Относительное различие масс изотопов тем меньше, чем больше атомный номер элемента. У изотопов водорода оно составляет 100% для дейтерия D (2 H) и 200% для трития Т (3 H) по сравнению с протием Н (1 H). Поэтому для водорода и гелия И. э. выражены наиболее сильно. К ним относятся, в частности, изотоническое смещение спектральных линий и эффекты, наблюдаемые при переходе в сверхпроводящее состояние и в состояние сверхтекучести.

  Разница в массах изотопов данного элемента обусловливает неодинаковость свойств у изотопных форм химического соединения, содержащего этот элемент (таких, как плотность, показатель преломления, вязкость, коэффициент диффузии и др.). Вследствие И. э. изменяются также термодинамические свойства, такие, как теплоёмкость, теплопроводность, теплота испарения, теплота плавления, давление насыщенного пара при данной температуре и др., а также частоты колебания атомов в молекулах и в кристаллических решётках.

  Использование изотопов в качестве изотопных индикаторов (меченых атомов) основано на представлении об идентичности физических и химических свойств изотопов данного элемента. Как показывает опыт, для многих изотопов это упрощающее представление близко к действительности, и для них величины И. э. (как кинетических, так и термодинамических) не выходят за пределы ошибок химического эксперимента. Однако для лёгких элементов различия в химических свойствах изотопов могут быть существенны. Это необходимо учитывать, когда в качестве меченых атомов используются изотопы лёгких элементов, особенно изотопы водорода — дейтерий или тритий. И. э. лежат в основе почти всех известных лабораторных и промышленных методов изотопов разделения .