Изменить стиль страницы

  Изотопический спин является, таким образом, важной характеристикой адрона — квантовым числом , показывающим, какое количество изотопических «партнёров» имеет данная частица (или в каком числе зарядовых состояний она может находиться).

  На основе И. и. удаётся предсказать существование, массу и заряды новых частиц, если известны их изотопические «партнёры». Так было предсказано существование p°, S°, X° по известным p+ , p ; S+ , S и X .

  И. и. имеет место и для составных систем из адронов, в частности для атомных ядер. Изотопический спин сложной системы складывается из изотопических спинов входящих в систему частиц, при этом сложение производится по тем же правилам, что и для обычного спина. Так, система из двух частиц с изотопическими спинами 1 /2 (например, нуклон) и 1 (например, p-мезон) может иметь изотопический спин I = 1 + 1 /2 = 3 /2 или I = 1 1 /2 = 1 /2 .

  В ядрах И. и. проявляется в существовании уровней энергии с одинаковыми квантовыми числами для различных изобаров (т. е. для ядер, содержащих одинаковое число нуклонов и отличающихся электрическим зарядом). Примером служат ядра 14 6 С, 14 7 N, 14 8 O: основное состояния ядер 14 С, 14 О и первое возбуждённое состояние 14 N образуют изотопический триплет, I = 1 (см. рис .). Все квантовые числа этих уровней одинаковы, а различие в их энергиях можно объяснить разницей электростатических энергий из-за различия в электрических зарядах этих ядер. (Основной уровень 14 N имеет изотопический спин I = 0, поэтому у него нет аналогов в ядрах 14 C и 14 O.)

  Из И. и. следует закон сохранения полного изотопического спина I в процессах, обусловленных сильными взаимодействиями. Этот закон приводит к определённым соотношениям между вероятностями процессов для различных частиц, входящих в одинаковые изотопические мультиплеты, а также к запрету некоторых реакций [например, реакция d + d ® 4 He + p° не может происходить за счёт сильных взаимодействий, так как для d (дейтрона) и 4 He I = 0, а для p°-мезона I = 1]. Экспериментальной проверке таких предсказаний посвящено много работ на ускорителях заряженных частиц высокой энергии.

  И. и. имеет место только для сильных взаимодействий и нарушается электромагнитными взаимодействиями (явно зависящими от электрических зарядов частиц, т. е. от I 3 ), «сила» которых по порядку величины составляет примерно 1% от сильных взаимодействий. Различие электромагнитных взаимодействий для разных частиц, входящих в один и тот же изотопический мультиплет, и обусловливает различие в их массах.

  Лит. см. при ст. Элементарные частицы .

  С. С. Герштейн.

Изотопический спин

Изотопи'ческий спин, одна из характеристик сильно взаимодействующих частиц, определяющая (вместе с другими характеристиками — массой, спином , барионным зарядом ) ее принадлежность к группе частиц с близкими свойствами (но разными электрическими зарядами), одинаковым образом участвующих в сильных взаимодействиях . См. Изотопическая инвариантность .

Изотопные индикаторы

Изото'пные индика'торы, вещества, имеющие отличный от природного изотопный состав и благодаря этому используемые в качестве метки при изучении самых разнообразных процессов. Роль изотопной метки выполняют стабильные или радиоактивные изотопы химических элементов, которые легко могут быть обнаружены и определены количественно. Высокая чувствительность и специфичность И. и. позволяют проследить за ними в сложных процессах перемещения, распределения и превращения веществ в сколь угодно сложных системах, в том числе и в живых организмах.

  Метод И. и. (называется также методом меченых атомов) был впервые предложен Д. Хевеши и Ф. Панетом в 1913. Широкое использование И. и. стало возможным благодаря развитию ядерной техники, позволившей получать изотопы в массовом масштабе.

  Метод И. и. основан на том, что химические свойства разных изотопов одного элемента почти одинаковы (благодаря чему поведение меченых атомов в изучаемых процессах практически не отличается от поведения других атомов того же элемента), и на лёгкости обнаружения изотопов, особенно радиоактивных. При использовании метода необходим учёт возможных реакций изотопного обмена , приводящих к перераспределению меченых атомов (следовательно, к потере соединением метки), а иногда и учёт радиационных эффектов, связанных с влиянием радиоактивных излучений на ход процесса. Изотоп, используемый в качестве метки, вводится в состав изучаемых соединений. Могут быть использованы как стабильные, так и радиоактивные изотопы.

  Преимущество стабильных изотопов — их устойчивость и отсутствие ядерных излучений. Однако только небольшое число элементов имеет подходящие стабильные изотопы. Малая доступность последних и сравнительно сложная техника обнаружения составляют недостатки метода И. и. с применением стабильных изотопов. Преимущество радиоактивных изотопов — возможность их получения практически для всех элементов периодической системы, высокая чувствительность, специфичность и точность определения, простота и доступность измерительной аппаратуры. Поэтому большинство исследований, использующих метод И. и., выполнено с радиоактивными изотопами.

  Такие элементы, как водород, углерод, сера, хлор, свинец, имеют удобные для использования как стабильные — 2 H, 13 C, 34 S, 35 Cl, 37 Cl, 204 РЬ, так и радиоактивные изотопы — 3 H, 11 C, 14 C, 35 S, 36 C1, 212 РЬ. В качестве изотопов азота и кислорода чаще всего применяются стабильные 15 N и 18 O и другие. Стабильные И. и. получают обогащением природных изотопных смесей путём многократного повторения операции разделения (перегонка, диффузия, термодиффузия, изотопный обмен, электролиз; см. Изотопов разделение ), а также на масс-спектрометрических установках и при ядерных реакциях.

  Для элементов, существующих в природе в виде одного изотопа (Be, F, Na, Al, P, I), в качестве меченых атомов используют только искусственные радиоактивные изотопы; примером часто применяемых радиоактивных изотопов служат 3 H, 14 C, 32 P, 35 S, 45 Ca, 51 Cr, 59 Fe, 60 Co, 89 Sr,95 Nb, 110 Ag, 131 I и др. Выбор радиоактивного изотопа определяется его ядерными характеристиками — периодом полураспада, типом и энергией излучения. Для индикации пригодны радиоактивные изотопы, период полураспада которых не очень мал, что позволяет работать в течение времени, необходимого для эксперимента, но и не очень велик, что даёт возможность работать с весьма малыми количествами индикатора.

  Основным методом анализа стабильных изотопов служит масс-спектрометрия (чувствительность 10-4 % изотопа при точности 0,1—1% для проб массой в доли мг ). Всё большее применение находят спектральные методы и парамагнитный резонанс. Дейтерий, 18 O и некоторые другие изотопы определяют по изменению показателя преломления, теплопроводности, плотности как самого элементарного вещества, так и его соединений. Радиоактивные изотопы определяют по их излучению при помощи счётчиков Гейгера или сцинтилляционных счётчиков. Так, с помощью счетчика Гейгера можно уловить излучение 10-11 г углерода 14 C, 10-16 г фосфора 32 Р и иода 131 I, 10-19 г углерода 11 C и т. д. Современные жидкостные сцинтилляционные счётчики позволяют с высокой эффективностью и точностью проводить определение изотопов с мягким бета-излучением (3 H, 14 C, 35 S и др.). Введение в практику этого метода изотопного анализа повышает его производительность и позволяет работать с незначительными активностями, приближающимися к активности космического фона. Широкое применение в биологии получил метод авторадиографии. При работе с радиоактивными изотопами необходимо соблюдать правила техники безопасности в соответствии с существующими нормами.