М. В. Классен-Неклюдова.
Рис. 2б. Фотография сдвойникованного кальцита.
Рис. 3. Слева — полисинтетический двойник сегнетовой соли; справа — полисинтетический двойник триглицинсульфата, выявленный травлением (фотография в отражённом свете).
Рис. 4. Схема расположения оптической индикатриссы: а — в ромбическом кристалле сегнетовой соли; б , в — в компонентах двойника, вытянутых вдоль осей с и b моноклинного кристалла.
Рис. 2а. Двойникование кальцита нажатием лезвия (метод Баумгауера).
Рис. 1. Двойники роста.
Двойное гражданство
Двойно'е гражда'нство, см. Бипатриды .
Двойное лучепреломление
Двойно'е лучепреломле'ние, расщепление пучка света в анизотропной среде (например, в кристалле) на два слагающих, распространяющихся с разными скоростями и поляризованных в двух взаимно перпендикулярных плоскостях. Д. л. впервые обнаружено и описано профессором Копенгагенского университета Э. Бартолином в 1669 в кристалле исландского шпата . Если световой пучок падает перпендикулярно к поверхности кристалла, то он распадается на 2 пучка, один из которых продолжает путь без преломления, как и в изотропной среде, другой же отклоняется в сторону, нарушая обычный закон преломления света (рис.). Соответственно этому лучи первого пучка называются обыкновенными, второго — необыкновенными. Угол, образуемый обыкновенным и необыкновенным лучами, называется углом Д. л. Если в случае перпендикулярного падения пучка поворачивать кристалл вокруг пучка, то след обыкновенного луча остаётся на месте, в центре, а след необыкновенного луча вращается по кругу.
Д. л. можно наблюдать и при наклонном падении пучка света на поверхность кристалла. В исландском шпате и некоторых др. кристаллах существует только одно направление, вдоль которого не происходит Д. л. Оно называется оптической осью кристалла, а такие кристаллы — одноосными (см. также Кристаллооптика ).
Направление колебаний электрического вектора у необыкновенного луча лежит в плоскости главного сечения (проходящей через оптическую ось и световой луч), которая является плоскостью поляризации. Нарушение законов преломления в необыкновенном луче связано с тем, что скорость распространения необыкновенной волны, а, следовательно, и её показатель преломления nе зависят от направления. Для обыкновенной волны, поляризованной в плоскости, перпендикулярной главному сечению, показатель преломления nо одинаков для всех направлений. Если из точки О (см. рис. ) откладывать векторы, длины которых равны значениям nе и nо в различных направлениях, то геометрические места концов этих векторов образуют сферу для обыкновенной волны и эллипсоид для необыкновенной (поверхности показателей преломления).
Из табл. видно, что Д. л., характеризуемое величиной и знаком D, может быть положительным и отрицательным. В соответствии с этим различают положительные и отрицательные (одноосные) кристаллы.
Кристалл | n | ne макс | ne максn |
Исландский шпат | 1,65836 | 1,48639 | -0,17197 |
Кварц | 1,5442 | 1,5533 | +0,0091 |
Каломель | 1,9733 | 2,6559 | +0,6826 |
Натриевая селитра | 1,587 | 1,336 | -0,251 |
В прозрачных кристаллах интенсивности обыкновенного и необыкновенного лучей практически одинаковы, если падающий свет был естественным. Выделив диафрагмой один из лучей, получившихся при Д. л., и пропустив его через второй кристалл, можно снова получить Д. л. Однако интенсивности обыкновенного и необыкновенного лучей в этом случае будут различны, т. к. падающий луч поляризован. Отношение интенсивностей зависит от взаимной ориентации кристаллов — от угла j, образуемого плоскостями главных сечений того и другого кристалла (плоскости, проходящие через оптическую ось и световой луч). Если j = 0° или 180°, то остаётся только обыкновенный луч. При j = 90°, наоборот, остаётся только луч необыкновенный. При j = 45° интенсивность обоих лучей одинакова.
В общем случае кристалл может иметь две оптических оси, т. е. два направления, вдоль которых Д. л. отсутствует. В двуосных кристаллах оба луча, появляющиеся при Д. л., ведут себя, как необыкновенные.
Измерение D в тех случаях, когда Д. л. велико, может быть осуществлено непосредственным определением показателей преломления при помощи призм или специальных кристаллорефрактометров, позволяющих делать измерения n в разных направлениях. Во многих случаях (особенно для тонких слоев анизотропных тел), когда пространственное разделение двух лучей столь мало, что измерить nо и nе невозможно, измерения делаются на основании наблюдения характера поляризации света при прохождении его через слой анизотропного вещества.
Д. л. объясняется особенностями распространения электромагнитных волн в анизотропных средах. Электрическое поле световой волны E, проникая в вещество, вызывает вынужденные колебания электронов в атомах и молекулах среды. Колеблющиеся электроны, в свою очередь, являются источником вторичного излучения света. Т. о., прохождение световой волны через вещество — результат последовательного переизлучения света электронами. В анизотропном веществе колебания электронов легче возбуждаются в некоторых определённых направлениях. Поэтому волны с различной поляризацией будут распространяться в анизотропном веществе с разными скоростями.
Помимо кристаллов, Д. л. наблюдается в искусственно анизотропных средах (в стеклах, жидкостях и др.), помещенных в электрическое поле (см. Керра эффект ), в магнитное поле (см. Коттона — Мутона эффект ), под действием механических напряжений (см. Фотоупругость ) и т. п. В этих случаях среда становится оптически анизотропной, причём оптическая ось параллельна направлению электрического поля, магнитного поля и т. п.
Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Поль Р. В., Оптика и атомная физика, пер. с нем. , М. , 1966.
Двойное лучепреломление в одноосном кристалле при перпендикулярном падении пучка света на переднюю грань кристалла. Обыкновенный луч не преломляется. Необыкновенный луч преломляется на угол двойного лучепреломления a; n — показатель преломления обыкновенной волны, не зависящий от направления; ne — показатель преломления необыкновенной волны, зависящий от направления.