Изменить стиль страницы

Давление

Давле'ние, физическая величина, характеризующая интенсивность нормальных (перпендикулярных к поверхности) сил, с которыми одно тело действует на поверхность другого (например, фундамент здания на грунт, жидкость на стенки сосуда, газ в цилиндре двигателя на поршень и т. п.). Если силы распределены вдоль поверхности равномерно, то Д. р на любую часть поверхности равно р = f/s, где S — площадь этой части, F — сумма приложенных перпендикулярно к ней сил. При неравномерном распределении сил это равенство определяет среднее Д. на данную площадку, а в пределе, при стремлении величины S к нулю, — Д. в данной точке. В случае равномерного распределения сил Д. во всех точках поверхности одинаково, а в случае неравномерного — изменяется от точки к точке.

  Для непрерывной среды аналогично вводится понятие Д. в каждой точке среды, играющее важную роль в механике жидкостей и газов. Д. в любой точке покоящейся жидкости по всем направлениям одинаково; это справедливо и для движущейся жидкости или газа, если их можно считать идеальными (лишёнными трения). В вязкой жидкости под Д. в данной точке понимают среднее значение Д. по трём взаимно перпендикулярным направлениям.

  Д. играет важную роль в физических, химических, механических, биологических и др. явлениях.

  С. М. Тарг.

  Д. в газовой среде связано с передачей импульса при столкновениях находящихся в тепловом движении молекул газа друг с другом или с поверхностью граничащих с газом тел. Д. в газах (его можно назвать тепловым) пропорционально температуре (кинетической энергии частиц, см. Газы ). В отличие от газов, где средние расстояния между хаотически движущимися частицами много больше самих частиц, в конденсированных средах (жидкостях и твёрдых телах) расстояния между атомами сравнимы с их размерами и определяются равновесием межатомных (межмолекулярных) сил отталкивания и притяжения. При сближении атомов силы отталкивания возрастают и обусловливают т. н. холодное Д. В конденсированных средах Д. имеет также и «тепловую» составляющую, связанную с тепловыми колебаниями атомов (ядер). При фиксированном или уменьшающемся объёме конденсированной среды «тепловое» Д. увеличивается с ростом температуры. При температурах ~ 104 К и выше заметный вклад в «тепловое» Д. вносит тепловое возбуждение электронов.

  Физическая природа Д. волн (звуковых, ударных, электромагнитных) рассмотрена отдельно — в ст. Давление звука , Ударная волна , Давление света .

  Таблица перевода единиц давления

н/м2 баркгс/см2 атммм pт. cт.мм вод. cт.
н/м2 Паскаль 1 -5-5-5-5 0,101972
бар 6дин/см2 5 1 1,01972 0,98692 750,06 4
кгс/см2 ат5 0,980665 1 0,96784 735,56 4
атм5 1,01325 1,0332 1 760 4
мм pт. cт. 133,322 -3-3-3 1 13,5951
мм вод. ст. 9,80665 -5-4-5-4 1

  Измеряют Д. манометрами , барометрами , вакуумметрами , а также различными давления датчиками .

  Единицы Д. имеют размерность силы, деленной на площадь; в Международной системе единиц единица Д. — н/м, в МКГСС системе единиц — кгс/см2 . Существуют внесистемные единицы Д.: атмосфера физическая (атм ), атмосфера техническая (am ), бар , а также мм вод. ст. и мм рт. ст. (тор), с помощью которых измеряемое Д. сравнивают с давлением столба жидкости (воды, ртути); см. табл.

  В США и Великобритании Д. выражают в lbf/in2 (фунт-сила на квадратный дюйм), в pdl/ft2 (паундаль на квадратный фут), в inH2 O (дюймах вод. ст. ), в ft H2 O (футах вод. ст. ), в in Hg (дюймах рт. ст. ) и др. 1lbf/ in2 =6894,76 н/м2 , 1рdl/ft2 = 1,48816 н/м2 , 1inH2 O = 249,089н/м2 ; 1ftH2 O = 2989,07 н/м2 , 1in Hg = 3386,39 н/м 2 .

  Л. Д. Лившиц.

Давление атмосферное

Давле'ние атмосфе'рное, см. Атмосферное давление .

Давление высокое

Давле'ние высо'кое, в широком смысле — давление, превышающее атмосферное; в конкретных технических и научных задачах — давление, превышающее характерное для каждой задачи значение. Столь же условно встречающееся в литературе подразделение Д. в. на высокие и сверхвысокие.

  Длительно действующее Д. в. называют статическим, кратковременно действующее — мгновенным или динамическим.

  В покоящихся газах и жидкостях Д. в. является гидростатическим: на любую свободную поверхность, граничащую со сжатой средой, действуют только нормальные напряжения, величина которых не зависит от ориентировки поверхности и (с точностью до давления, обусловленного собственным весом сжатой среды) одинакова во всём объёме. Твёрдые тела обладают конечным сопротивлением сдвигу (в жидкостях при достаточно медленном нагружении оно равно нулю), поэтому напряжённое состояние твёрдого тела определяется как нормальными, так и касательными напряжениями (напряжениями сдвига). При сжатии твёрдой среды в ней возникает сложная система механических напряжений, которые в общем случае изменяются от одной точки тела к другой. Средним давлением (средним нормальным напряжением) в данной точке тела называется среднее арифметическое значение нормальных напряжений в трёх взаимно перпендикулярных направлениях.

  Перепад среднего давления в сжимаемом теле и напряжения сдвига вносят известную неопределённость в экспериментально определяемые значения Д. в. в твёрдом веществе; Д. в. в этом случае называют квазигидростатическим. Чем меньше величина напряжений сдвига по сравнению со средним нормальным напряжением, тем ближе квазигидростатическое Д. в. к гидростатическому. Термин «Д. в.» употребляется для обозначения как гидростатического, так и квазигидростатического давления.

  В физике в качестве единицы Д. в. применяют обычно килобар (1 кбар == 108 н/м 2 1019,7 кгс/см 2 ).

  В природе статические Д. в. существуют в первую очередь благодаря действию тяготения (гравитации). Гравитационное поле Земли создаёт в горных породах статическое давление, изменяющее от атмосферного в поверхностных слоях до ~ 3,5•103 кбар в центре планеты. Большая часть Земли находится под действием статического Д. в. и высоких температур, достаточных для изменения физических и химических свойств минералов и минерального состава горных пород (рис. 1 ). Статическое Д. в. в центре Солнца составляет ~ 107 кбар, а в центре звёзд белых карликов оно предполагается равным 1010 —1012 кбар.