В число специфичных требований к компоновке оборудования АЭС входят: минимально возможная протяжённость коммуникаций, связанных с радиоактивными средами, повышенная жёсткость фундаментов и несущих конструкций реактора, надёжная организация вентиляции помещений. На рис. показан разрез главного корпуса Белоярской АЭС с канальным графито-водным реактором. В реакторном зале размещены: реактор с биологической защитой, запасные ТВЭЛы и аппаратура контроля. АЭС скомпонована по блочному принципу реактор — турбина. В машинном зале расположены турбогецераторы и обслуживающие их системы. Между машинным и реакторным залами размещены вспомогательное оборудование и системы управления станцией.
Экономичность АЭС определяется её основными техническими показателями: единичная мощность реактора, кпд, энергонапряжённость активной зоны, глубина выгорания ядерного горючего, коэффициент использования установленной мощности АЭС за год. С ростом мощности АЭС удельные капиталовложения в неё (стоимость установленного квт) снижаются более резко, чем это имеет место для ТЭС. В этом главная причина стремления к сооружению крупных АЭС с большой единичной мощностью блоков. Для экономики АЭС характерно, что доля топливной составляющей в себестоимости вырабатываемой электроэнергии 30—40% (на ТЭС 60—70%). Поэтому крупные АЭС наиболее распространены в промышленно развитых районах с ограниченными запасами обычного топлива, а АЭС небольшой мощности — в труднодоступных или отдалённых районах, например АЭС в пос. Билибино (Якутская АССР) с электрической мощностью типового блока 12 Мвт. Часть тепловой мощности реактора этой АЭС (29 Мвт) расходуется на теплоснабжение. Наряду с выработкой электроэнергии АЭС используются также для опреснения морской воды. Так, Шевченковская АЭС (Казахская ССР) электрической мощностью 150 Мвт рассчитана на опреснение (методом дистилляции) за сутки до 150 000 т воды из Каспийского моря.
В большинстве промышленно развитых стран (СССР, США, Англия, Франция, Канада, ФРГ, Япония, ГДР и др.) по прогнозам мощность действующих и строящихся АЭС к 1980 будет доведена до десятков Гвт. По данным Международного атомного агентства ООН, опубликованным в 1967, установленная мощность всех АЭС в мире к 1980 достигнет 300 Гвт.
В Советском Союзе осуществляется широкая программа ввода в строй крупных энергетических блоков (до 1000 Мвт) с реакторами на тепловых нейтронах. В 1948—49 были начаты работы по реакторам на быстрых нейтронах для промышленных АЭС. Физические особенности таких реакторов позволяют осуществить расширенное воспроизводство ядерного горючего (коэффициент воспроизводства от 1,3 до 1,7), что даёт возможность использовать не только 235U, но и сырьевые материалы 238U и 232Th. Кроме того, реакторы на быстрых нейтронах не содержат замедлителя, имеют сравнительно малые размеры и большую загрузку. Этим и объясняется стремление к интенсивному развитию быстрых реакторов в СССР. Для исследований по быстрым реакторам были последовательно сооружены экспериментальные и опытные реакторы БР-1, БР-2, БР-З, БР-5, БФС. Полученный опыт обусловил переход от исследований модельных установок к проектированию и сооружению промышленных АЭС на быстрых нейтронах (БН-350) в г. Шевченко и (БН-600) на Белоярской АЭС. Ведутся исследования реакторов для мощных АЭС, например в г. Мелекессе построен опытный реактор БОР-60.
Крупные АЭС сооружаются и в ряде развивающихся стран (Индия, Пакистан и др.).
На 3-й Международной научно-технической конференции по мирному использованию атомной энергии (1964, Женева) было отмечено, что широкое освоение ядерной энергии стало ключевой проблемой для большинства стран. Состоявшаяся в Москве в августе 1968 7-я Мировая энергетическая конференция (МИРЭК-VII) подтвердила актуальность проблем выбора направления развития ядерной энергетики на следующем этапе (условно 1980—2000), когда АЭС станет одним из основных производителей электроэнергии.
Лит.: Некоторые вопросы ядерной энергетики. Сб. ст., под ред. М. А. Стыриковича, М., 1959; Канаев А. А., Атомные энергетические установки, Л., 1961; Калафати Д. Д., Термодинамические циклы атомных электростанций, М.—Л., 1963; 10 лет Первой в мире атомной электростанции СССР. [Сб. ст.], М., 1964; Советская атомная наука и техника. [Сборник], М., 1967; Петросьянц А. М., Атомная энергетика наших дней, М., 1968.
С. П. Кузнецов.
Рис. 2. Принципиальная схема АЭС: 1 — ядерный реактор; 2 — циркуляционный насос; 3 — теплообменник; 4 — турбина; 5 — генератор электрического тока.
Рис. 1. Атомная электростанция АН СССР. в г. Обнинске Калужской обл.
Расположение основных объектов станции: 1 — главный корпус; 2 — служебный корпус; 3 — химводоочистка; 4 — газгольдерная; 5 — спецводоочистка.
Рис. 3. Принципиальная тепловая схема АЭС с ядерным перегревом пара (2-й блок Белоярской АЭС): 1 — реактор; 2 — испарительный канал; 3 — пароперегревательный канал; 4 — барабан-сепаратор; 5 — циркуляционный насос; 6 — деаэратор; 7 — турбина; 8 — конденсатор; 9 — конденсатный насос; 10 — регенеративный подогреватель низкого давления; 11 — питательный насос; 12 — регенеративные подогреватели высокого давления; 13 — генератор электрического тока.
Разрез главного корпуса станции: 1 — реактор;2 — запасные ТВЭЛы; 3 — сепаратор; 4 — деаэратор; 5 — пульт управления; 6 — машинный зал; 7 — мостовой кран; 8 — главный циркуляционный насос; 9 — водоподогреватель; 10 — кран перегрузки ТВЭЛов; 11 — вытяжная вентиляция; 12 — воздухозаборняк приточной вентиляции.
«Атомная энергия»
«А'томная эне'ргия», советский ежемесячный научно-технический журнал, орган Государственного комитета по использованию атомной энергии СССР и АН СССР. Издаётся в Москве с 1956. Тематика журнала: ядерная энергетика, сырьё и материалы для атомной промышленности, применение изотопов и ионизующих излучений в народном хозяйстве, радиационная безопасность, ядерное приборостроение, проблема управляемых термоядерных реакций и физика плазмы, непосредственное преобразование ядерной энергии в электрическую, ускорение заряженных частиц, нейтронная физика и физика деления атомных ядер. Тираж (1970) 2730 экз.
Атомная энергия
А'томная эне'ргия, энергия, выделяющаяся в процессе превращения атомных ядер. Источником А. э. является внутренняя энергия атомного ядра. Более точное название А. э. — ядерная энергия.