Распределение электронной плотности. Состояние электрона в А. можно характеризовать распределением в пространстве его электрического заряда с некоторой плотностью — распределением электронной плотности. При этом электроны рассматриваются наглядным образом, как «размазанные» в пространстве и образующие «электронное облако». Такая модель правильнее характеризует электроны в А., чем модель точечного электрона, движущегося, согласно теории Бора (см. Атомная физика), по строго определённым орбитам. Вместе с тем боровским орбитам можно сопоставить определённые распределения электронной плотности. Для основного уровня энергии Е1 электронная плотность концентрируется вблизи ядра; для возбуждённых уровней энергии E2, E3, E4,... она распределяется на всё больших средних расстояниях от ядра (что соответствует возрастанию размера орбит в теории Бора). В сложном А. эти электроны группируются в оболочки, окружающие ядро на различных расстояниях и характеризующиеся определёнными распределениями электронной плотности. Прочность связи электронов в более внешних оболочках меньше, чем во внутренних, и слабее всего электроны связаны в самой внешней оболочке, обладающей наибольшими размерами, которые и определяют размеры А. в целом. При ионизации А. теряет внешние электроны; размеры положительных ионов тем меньше размеров нейтрального А., чем выше кратность иона. Наоборот, размеры отрицательных ионов больше размеров нейтрального А.
Учёт спина электрона и спина ядра. В теории А. весьма существен учёт спина электрона — его собственного (спинового) момента количества движения, с наглядной точки зрения соответствующего вращению электрона вокруг собственной оси (если электрон рассматривать как частицу малых размеров). Со спином электрона связан его магнитный момент. Поэтому в А. необходимо учитывать, наряду с электростатическими взаимодействиями (см. выше), и магнитные взаимодействия, определяемые спиновым магнитным моментом, а также орбитальным магнитным моментом, связанным с движением электрона вокруг ядра; магнитные взаимодействия малы по сравнению с электростатическими. Наиболее существенное влияние спина проявляется в сложных А.: от спина электронов зависит заполнение электронных оболочек А. определённым числом электронов (см. ниже).
Ядро в А. также может обладать собственным механическим моментом — ядерным спином, с которым связан небольшой ядерный магнитный момент (в сотни и тысячи раз меньший электронного магнитного момента), а в некоторых случаях и т. н. квадрупольный электрический момент (см. Моменты атомных ядер). Это приводит к дополнительным очень малым взаимодействиям ядра и электронов, обусловливающим дополнительное расщепление уровней энергии А. — т. н. сверхтонкую структуру (малую по сравнению с тонкой структурой).
Квантовые состояния атома водорода. Важнейшую роль в квантовой теории А. играет теория простейшего одноэлектронного А., состоящего из ядра с зарядом +Ze и электрона с зарядом —е, — теория А. водорода Н и водородоподобных ионов Не+, Li2+, Ве3+,... (изоэлектронного ряда, см. выше), называется обычно теорией А. водорода. Методами квантовой механики можно получить точную и полную характеристику состояний электрона в одноэлектронном А. Задача о сложных (многоэлектронных) атомах решается лишь приближённо; при этом исходят из результатов решения задачи об одноэлектронном А.
Уровни энергии А. водорода и водородоподобных ионов. Энергия одноэлектронного А. (без учёта спина электрона) равна
целое число n = 1, 2, 3, ... определяет возможные дискретные значения энергии — уровни энергии; его называют главным квантовым числом. R — Ридберга постоянная, равная 13,6 эв. Уровни энергии А. водорода на схеме рис. 1, б построены для Z = 1 согласно формуле (4); они сгущаются (сходятся) к границе ионизации Е¥ = 0, соответствующей n = ¥ (уровни энергии с n > 5 на схеме не показаны). Для водородоподобных ионов изменяется (в Z2 раз) лишь масштаб энергий. Энергия ионизации водородоподобного А. (энергия связи электрона в таком А.) равна (в эв)
Еион = E¥ — E1 = RZ2 = 13,6Z2 (5)
что даёт для Н, Не+, Li2+, ... значения 13,6 эв, 54,4 эв, 122,4 эв, ...
Основная формула (4) соответствует выражению U (r) = —Ze2/r для потенциальной энергии электрона, притягиваемого ядром с зарядом +Ze [см. (2) и рис. 1, а для случая Z = 1]. Эта формула была впервые выведена Н. Бором в его теории А. (1913) путём рассмотрения движения электрона вокруг ядра по круговой орбите радиуса r. Уровням энергии (4) соответствуют орбиты радиуса
anZ = an2/Z (6)
где постоянная a0 = 0,529 10—8см = 0,529
— радиус первой круговой орбиты А. водорода, соответствующей его основному уровню (этим боровским радиусом часто пользуются в качестве удобной единицы для измерений длин в атомной физике). Радиус орбит пропорционален квадрату главного квантового числа n2 и обратно пропорционален Z; для водородоподобных ионов масштаб линейных размеров уменьшается в Z раз по сравнению с А. водорода.Характеристика квантовых состояний атома водорода. Согласно квантовой механике, состояние А. водорода полностью определяется дискретными значениями четырёх физических величин: энергии Е, орбитального момента Ml, (момента количества движения электрона относительно ядра); проекции Mlz орбитального момента на направление z (выбранное произвольно в пространстве); проекции Msz спинового момента (собственного момента количества движения электрона Ms). Возможные значения этих физических величин, в свою очередь, определяются соответствующими квантовыми числами:
1) Е — по закону (4) — главным квантовым числом n =1, 2, 3, ...;
2) Мl — по закону Ml2 = (h2/4p2)l(l + 1) [при l " 1, Ml2 = (h2/4p2)l2 — орбитальным (или азимутальным) квантовым числом l = 0,1, 2, ..., n—1;
3) Mlz — по закону Mlz = (h/2p)mlz — магнитным орбитальным квантовым числом ml = l, l—1, ..., —l;
4) Msz — по закону Msz = (h/2p)ms — магнитным спиновым квантовым числом ms = 1/2, —1/2.
Значения квантовых чисел n, l, ml, ms и характеризуют состояние электрона в А. водорода. Энергия А. водорода зависит только от n, и уровню энергии с заданным n соответствует ряд состояний, отличающихся значениями l, ml и ms. Состояния с заданными значениями n и l принято обозначать как 1s, 2s, 2p, 3s, ..., где цифры указывают значение n, а буквы s, р, d, f (дальше по латинскому алфавиту) — соответственно значения l = 0, 1, 2, 3, ... При заданных n и l число различных состояний равно 2(2l + 1) — числу комбинаций значений ml и ms (первое принимает 2l + 1 значение, второе — 2 значения). Общее число различных состояний с заданными n и l при учёте, что l может принимать значения от 0 до n—1, получается равным