Изменить стиль страницы

  Масса А. приближённо равна массовому числу А и изменяется от 1,67 10—24 г для самого лёгкого А. водорода (основного изотопа: Z = 1, A = 1) до примерно 4 10—22 г для самых тяжёлых А. трансурановых элементов (Z = 100, А = 250).

  Наиболее точные значения масс А. могут быть определены методами масс-спектроскопии. Масса А. не равна в точности сумме массы ядра и масс электронов, а несколько меньше — на дефект массы DМ = W/c2', где W — энергия образования А. из ядра и электронов, а с — скорость света. Эта поправка — порядка массы одного электрона mе для тяжёлых А., а для лёгких А. пренебрежимо мала (порядка 10—4 массы электрона).

  Энергия атома и её квантование. Благодаря малым размерам и большой массе ядра его можно приближённо считать точечным и покоящимся в центре масс А. (общий центр масс ядра и электронов находится вблизи ядра, а скорость движения ядра относительно центра масс А. мала по сравнению со скоростями движения электронов). Соответственно А. можно рассматривать как систему, в которой N электронов с зарядами —е движутся вокруг неподвижного притягивающего центра. Движение электронов в А. происходит в ограниченном объёме — оно является связанным. Полная внутренняя энергия А. Е равна сумме кинетических энергий всех электронов Т и потенциальной энергии U — энергии притяжения их ядром и отталкивания их друг от друга (электростатической энергии взаимодействия электрических зарядов ядра и электронов, согласно закону Кулона).

  В простейшем случае А. водорода один электрон с зарядом —е движется вокруг неподвижного центра с зарядом +е. В этом случае, согласно классической механике, кинетическая энергия

Т =1/2mv =p2/2m     (1)

  где m — масса, v — скорость, p = mv — количество движения (импульс) электрона. Потенциальная энергия (сводящаяся к энергии притяжения электрона ядром)

U = U(r) = —e2/r     (2)

и зависит только от расстояния r электрона от ядра. Графически функция U(r) изображается кривой (рис. 1, а), неограниченно убывающей при уменьшении r, т. е. при приближении электрона к ядру. Значение U (r) на бесконечности принято за нуль. При отрицательных значениях полной энергии Е = Т + U < 0 движение электрона является связанным: оно ограничено в пространстве значениями r = rmax, при которых Т = 0, Е = U(rmax). При положительных значениях полной энергии E = T + U > 0 движение электрона является свободным — он может уйти на бесконечность с энергией Е = Т = 1/2 mv2, что соответствует ионизованному А. водорода Н+. Нейтральный А. водорода Н представляет, т. о., систему, состоящую из ядра и электрона в связанном состоянии с энергией E < 0.

  Полная внутренняя энергия А. Е является его основной характеристикой как квантовой системы — системы, подчиняющейся квантовым законам (см. Квантовая механика). Как показывает огромный экспериментальный материал (см., например, Франка—Герца опыт), А. может длительно находиться лишь в состояниях с определённой энергией — стационарных (неизменных во времени) состояниях.

  Существование стационарных состояний — один из основных законов физики микроскопических явлений — квантовой физики. Внутренняя энергия квантовой системы, состоящей из связанных микрочастиц (такой системой и является А.), может принимать одно из дискретного (прерывного) ряда значений

E1, E2, E3, ...(E1 < E2 < E3 < ...).     (3)

  Каждому из этих «дозволенных» значений энергии соответствует одно или несколько стационарных квантовых состояний движения. Промежуточными значениями энергии (например, лежащими между E1 и E2, E2 и E3 и т.д.) система обладать не может, о такой системе говорят, что её энергия квантована, а нахождение возможных значений энергии называется квантованием энергии. Любое изменение энергии Е связано с квантовым (скачкообразным) переходом системы из одного стационарного квантового состояния в другое (см. ниже).

  Графически возможные дискретные значения энергии (3) А. можно изобразить, по аналогии с потенциальной энергией тела, поднятого на различные высоты (на различные уровни), в виде схемы уровней энергии, где каждому значению энергии соответствует прямая, проведённая на высоте Ei (i = 1, 2, 3, ...); такая схема приведена на рис. 1, б для А. водорода (на рис. 1, а при E < 0 оказываются, т. о., возможными лишь определённые ступеньки, соединённые горизонтальным пунктиром с уровнями схемы на рис. 1, б). Самый нижний уровень Ei, соответствующий наименьшей возможной энергии системы, называется основным, а все остальные (Ei > Ei, г = 2, 3, 4, ...) — возбуждёнными, т. к. для перехода на них (перехода в соответствующие стационарные возбуждённые состояния из стационарного основного состояния) необходимо возбудить систему — сообщить ей извне энергию Ei—E1.

  Квантование энергии А. является следствием волновых свойств электронов. Нельзя считать, что электрон в А. движется как материальная точка по определённой траектории, согласно законам классической механики. Эти законы справедливы лишь для частиц большой массы (макрочастиц), а для электрона, как микрочастицы, необходимо учитывать, наряду с его корпускулярными свойствами (свойствами частицы), и его волновые свойства. Согласно квантовой механике, движению микрочастицы массы m со скоростью v соответствует длина волны l = h/mv, где h — Планка постоянная. Для электрона в А. l ~ 10—8 см, т. е. порядка линейных размеров А., и учёт волновых свойств электрона в А. является необходимым. Связанное движение электрона в А. схоже со стоячей волной, и его следует рассматривать не как движение материальной точки по траектории, а как сложный колебательный процесс. Для стоячей волны в ограниченном объёме возможны лишь определённые значения длины волны l (и, следовательно, частоты колебаний v). Так как, согласно квантовой механике, v = E/h, отсюда следует, что система, состоящая, подобно А., из связанных микрочастиц, может иметь лишь определённые значения энергии, т. е. энергия квантуется и получается дискретная последовательность уровней энергии — дискретный энергетический спектр. Для А. водорода такая дискретная последовательность получается при Е < 0 (см. рис. 1). Свободное, т. е. не ограниченное в пространстве, поступательное движение микрочастицы, например движение электрона, оторванного от А. (в случае А. водорода — электрона с энергией Е > 0), сходно с распространением бегущей волны в неограниченном объёме, для которой возможны любые значения l (и v). Энергия такой свободной микрочастицы может принимать любые значения, т. е. не квантуется, и получается непрерывная последовательность уровней энергии — непрерывный энергетический спектр. Для А. водорода такая непрерывная последовательность, соответствующая ионизованному А., получается при E > 0. Значение Е ¥ = 0 соответствует границе ионизации, а разность Е ¥Е1 = Еион представляет энергию ионизации: для А. водорода она равна 13,6 эв.