Важным направлением А. явилось составление звёздных каталогов, содержащих точнейшие координаты звёзд. Их значение настолько велико, что они были названы фундаментом А. Они нужны как для научных целей, в частности для определения астрономических постоянных и исследования движений во Вселенной, так и для прикладных целей — геодезии, картографии, географических исследований, мореплавания, космонавтики. В этой области особенно большие заслуги имеют обсерватории: Гринвичская (основана в 1675), Пулковская (1839), Вашингтонская (1842) и обсерватория в Кейптауне в Юж. Африке (1820).
В конце 18 в. сведения о Солнечной; системе пополнились благодаря открытию в 1781 планеты Уран. Изучение закономерностей его движения привело в 1846 к открытию Нептуна, а в 1930 была открыта самая удалённая от Солнца планета Плутон. В 1801 была обнаружена первая малая планета, в настоящее время (конец 60-х гг. 20 в.) известно уже более 1700 тел этого типа. Некоторые из них представляют большой интерес характером своего движения (например, т. н. Троянцы), другие — малостью расстояния, на которое они могут приближаться к Земле.
Развитие астрофизики. До середины 18 в. из разделов А., составляющих современную астрофизику, лишь фотометрия, первоначально ограничивавшаяся глазомерными оценками блеска звёзд, получила экспериментальную разработку в трудах французского учёного П. Бугера (1729) и теоретическое обоснование в исследованиях немецкого учёного И. Ламберта (1760). Тогда же было окончательно доказано, что Солнце есть звезда, отличающаяся от других звёзд лишь близостью к нам, а что если его удалить на расстояния звёзд, то оно ничем не будет от них отличаться. Изучение количества звёзд: разных звёздных величин позволило В. Я. Струве в 1847 обосновать существование поглощения света в межзвёздном пространстве — явления, окончательно подтвержденного в 1930 американским астрономом Р. Трамплером.
Огромные и всё увеличивающиеся возможности исследования физической природы и химического состава звёзд были получены благодаря изобретению спектрального анализа (Р. Бунзен и Г. Кирхгоф, 1859). Пионерами применения этого метода к Солнцу, звёздам и туманностям были У. Хёггинс и Дж. Локьер в Англии, А. Секки в Италии, Ж. Жансен во Франции. Чешский физик К. Доплер сформулировал в 1842 свой знаменитый принцип (Доплера эффект), уточнённый А. Физо в 1848 и экспериментально проверенный А. А. Белопольским на лабораторной установке в 1900. Принцип Доплера получил многочисленные применения в А. для измерений движения по лучу зрения и вращения звёзд, турбулентных движений в солнечной фотосфере и пр., а затем и в самых разнообразных областях физики. Спектральный анализ позволил углубить исследования переменных звёзд, изучение которых началось ещё в конце 18 в., а также обнаружить множество спектрально-двойных звёзд, компоненты которых столь близки между собой, что их невозможно раздельно наблюдать даже в самые сильные телескопы.
Изобретённая в 1839 фотография получила широкое применение в А., когда стали изготовлять сухие фотопластинки. Особенную пользу принесла фотография в сочетании с фотометрией, спектроскопией и астрометрией, позволив глубоко и детально исследовать строение, химический состав и движение различных небесных объектов. Фотоэмульсия как приёмник излучения с большим успехом заменила глаз при многих астрономических наблюдениях, повысив их точность, объективность и документальность, а также позволила фиксировать неуловимые глазом быстротекущие явления и слабые небесные светила. Когда выяснились преимущества и возможности фотографии, в 1888 был принят международный план составления фотографического каталога звёзд всего неба до 11-й звёздной величины общим числом около 3,5 млн. и карт, содержащих около 30 млн. звёзд до 14-й звёздной величины (около 22 000 листов). В выполнении этой работы приняли участие 18 обсерваторий мира. С тех пор астрофотография заняла прочное место в практике астрономических наблюдений.
Астрономия в 20 в. А. в 20 в. характеризуется огромным развитием техники наблюдений. Строят большие рефлекторы, в которых быстро темнеющие металлические зеркала заменены стеклянными, посеребрёнными химическим путём либо покрытыми слоем алюминия катодным распыливанием в высоком вакууме. В США в 1908 сооружен рефлектор с зеркалом диаметром 152 см, 254 см в 1917, 508 см в 1948, 305 см в 1959. В СССР в 1960 вступил в строй рефлектор с зеркалом в 260 см, монтируется рефлектор с зеркалом диаметром 600 см. Таким инструментам с современными светоприёмниками становятся доступными звёзды до 25-й звёздной величины, которые в 1010 раз слабее наиболее ярких (см. Астрономические инструменты и приборы).
Большие успехи достигнуты в создании новых типов приёмников излучения. Во много раз повышена чувствительность фотоэмульсий и расширена их спектральная область. Фотоэлектронные умножители, электронно-оптические преобразователи, методы электронной фотографии и телевидения (телевизионные телескопы) значительно повысили точность и чувствительность фотометрических наблюдений и ещё более расширили спектральный диапазон регистрируемых излучений. Совершенствование спектральной аппаратуры позволило, с одной стороны, получать спектрограммы с очень высокими дисперсиями, а с другой — регистрировать спектры очень слабых светил. Стал доступным наблюдению мир далёких галактик, находящихся на расстояниях млрд. световых лет (см. Галактики, Вселенная).
В 30-х гг. 20 в. возник новый, быстро развивающийся раздел А. — радиоастрономия: было обнаружено, что из многих точек небесной сферы к нам приходят электромагнитные излучения в диапазоне от миллиметровых до метровых волн. Многие из этих источников излучения были отождествлены с галактиками. Но в 60-х гг. были найдены практически точечные мощные источники, которыми оказались слабые объекты с необычными оптическими спектрами без тёмных линий поглощения и лишь немногими светлыми эмиссионными линиями. Последние удалось отождествить с линиями водорода и некоторых других элементов, очень сильно смещенными в сторону длинных волн; красное смещение, будучи истолковано как эффект Доплера, свидетельствует об их огромной, составляющей миллиарды световых лет удалённости. Эти загадочные объекты, излучение которых, по-видимому, имеет синхротронную природу, получили название квазаров. Ещё более загадочны источники радиоизлучения переменной мощности с периодами порядка секунды, названные пульсарами. С помощью радиоастрономических наблюдений изучено распределение межзвёздного водорода в Галактике и подтверждено её спиральное строение (см. Галактика, Межзвёздная среда).
Энергия звёзд, в частности Солнца, генерируется в их недрах ядерными процессами при температурах, достигающих десятков млн. градусов, что сопровождается выделением особых частиц огромной проницающей способности, т. н. нейтрино. Их исследование привело к возникновению ещё одной отрасли — нейтринной астрономии.
Новейшая вычислительная техника нашла широкое применение в обработке наблюдений и открыла новые возможности в небесной механике и астрофизике, в частности при вычислении движения искусственных спутников и межпланетных ракет.
Значительных успехов достигли исследования Солнца. Использование специальных фильтров, пропускающих очень узкую полосу спектра, позволило изучить распределение и движение отдельных элементов — водорода, гелия, кальция в солнечной хромосфере. Благодаря разработке специальной методики и аппаратуры стало возможным наблюдать солнечную корону вне затмений — в ясный день, а Зеемана явление дало возможность изучать магнитные поля на Солнце, определяющие ряд явлений как на Солнце, так и на Земле.