Астрономия в средние века. «Альмагест» Птолемея, в котором были подытожены астрономические знания того времени, оставался в течение многих веков фундаментом геоцентрической системы мира. Возникновение христианства с его догматизмом, нашествия варваров привели к упадку естествознания и, в частности, А. в средние века. В течение целого тысячелетия в Европе было мало прибавлено, но много позабыто из того, что было известно о строении Вселенной благодаря трудам учёных античного мира. Священное писание явилось каноном, из которого черпались ответы на все вопросы, в том числе и из области А.
Лишь арабы и соприкасавшиеся с ними народы сделали попытку если не реформировать А., то по крайней мере уточнить новыми наблюдениями старые теории. Багдадский халиф аль-Мамун распорядился в 827 перевести сочинение Птолемея с греческого на арабский язык. Арабский учёный аль-Баттаии в конце 9 — начале 10 вв. произвёл многочисленные наблюдения, уточнив значения годичной прецессии, наклона эклиптики к экватору, эксцентриситета и долготы перигея орбиты Солнца. В том же 10 в. арабский астроном Абу-ль-Вефа открыл одно из неравенств (неправильностей) в движении Луны. Большие заслуги в развитии А. принадлежат Абу Рейхану Вируни (Хорезм, конец 10 — 11 вв.), автору разнообразных астрономических исследований. А. процветала у арабских народов и в Ср. Азии вплоть до 15 в. Многие крупнейшие учёные наряду с другими науками занимались уточнением астрономических постоянных геоцентрической теории. Особенно известны астрономические таблицы, составленные в 1252 еврейскими и мавританскими учёными по распоряжению Кастильского правителя Альфонса Х и поэтому называвшиеся альфонсовыми. Наблюдательная А. получила развитие в Азербайджане, где Насирэддин Туси соорудил большую обсерваторию в Мараге. По размерам, количеству и качеству инструментов выдающееся место заняла обсерватория Улугбека в Самарканде, где в 1420—37 был составлен новый большой каталог звёзд. Арабы сохранили от забвения классическую А. греков, обновили планетные таблицы, развили теорию, но, следуя Птолемею, не внесли в А. коренных реформ. В эту эпоху астрономические наблюдения производились также в Китае и Индии.
В 12—13 вв. некоторое оживление естествознания стало замечаться также и в Европе. Постепенно, не без влияния арабов, наиболее просвещённые люди знакомились с наукой и философией древних греков, сочинения которых переводили (часто с арабского) на латинский язык. Учение Аристотеля было признано согласным с церковной догмой: геоцентрическая система мира не противоречила священному писанию. В Италии, а затем и в других странах Зап. Европы учреждались университеты, которые, хотя и находились под сильным влиянием церковной схоластики, всё же содействовали развитию естествознания.
Гелиоцентрическая система мира. В связи с развивающимися мореплаванием и географическими исследованиями, требовавшими уточнения знаний положений звёзд и планет, несколько выдающихся астрономов, главным образом в Германии, возобновили наблюдения для усовершенствования планетных таблиц. В передовых университетах преподавалась геометрия, необходимая для усвоения теории эпициклов, и изучался «Альмагест», несколько переводов которого на латинский язык было напечатано в Венеции (1496, 1515 и 1528) и в Базеле (1538). Всё это благоприятствовало тому, что польский астроном Н. Коперник, познакомившийся в Краковском университете и затем в Италии со всеми подробностями теории эпициклов, по возвращении в Польшу произвёл полный переворот в А., вскрыв истинное строение планетной системы с Солнцем в центре и движущимися вокруг него планетами, в том числе и Землёй вместе с её спутником Луной. Уже древнегреческий астроном Аристарх Самосский в 3 в. до н. э. высказывал мысль, что Земля движется вокруг Солнца, а Гераклит ещё раньше предполагал, что Земля вращается вокруг оси. Но только Коперник во всех деталях разработал и обосновал гелиоцентрическую систему мира и последовательно изложил её в сочинении «Об обращениях небесных сфер», напечатанном в Нюрнбергов 1543. Этот труд дал ключ к познанию Вселенной в её действительном строении, а не в виде математической абстракции, описывающей лишь видимую сторону явлений. Однако веками укоренившееся мнение о неподвижной Земле как центре Вселенной, разделяемое церковью, долго не уступало места новому учению, которое не могли понять даже многие выдающиеся люди того времени. Считалось, что система Коперника лишь гипотеза, предназначенная для вычисления планетных движений, чему способствовало предисловие издателя книги Коперника, напечатанное без ведома автора. Даже крупнейший наблюдатель датский астроном Тихо Браге (16 в.) отказывался принять и даже понять гелиоцентрическую систему. Окончательно утвердил теорию Коперника, получив непреложные доказательства её истинности, итальянский физик, механик и астроном Г. Галилей (2-я половина 16 — 1-я половина 17 вв.). Другой пламенный проповедник множественности обитаемых миров — Дж. Бруно (16 в.) за это, с точки зрения церкви, еретическое учение после семилетнего заключения был сожжён в Риме на костре. Астрономические открытия Галилея были сделаны с помощью телескопа, незадолго перед тем изобретённого в Голландии. Галилей, узнав об этом изобретении, летом 1609 в Венеции сделал собственную зрительную трубу и уже в начале следующего года оповестил весь мир о своих удивительных открытиях. На Луне он увидел горы, обнаружил диски у планет, Млечный Путь оказался состоящим из бесчисленных звёзд, невидимых невооружённым глазом, в скоплении Плеяд он насчитал св. 40 звёзд. Затем он открыл 4 спутника Юпитера, которые, обращаясь вокруг центральной планеты, представляли уменьшенную копию планетной системы. Обнаруженная им смена фаз Венеры свидетельствовала о том, что эта планета обращается вокруг Солнца, а не Земли. На самом Солнце Галилей увидел пятна, разделив честь этого открытия с немецкими астрономами К. Шейнером и И. Фабрициусом. И только тогда, когда гелиоцентрическая система мира получила столь блестящие подтверждения, католическая церковь приняла меры к её запрету, считая, что она подрывает авторитет Священного писания. Перед судом инквизиции Галилей был вынужден отречься от учения Коперника (1633). Само же сочинение Коперника было внесено в список (индекс) запрещенных книг (этот запрет официально был снят лишь 200 лет спустя).
Развитие небесной механики. Современник Галилея И. Кеплер, будучи в Праге ассистентом Тихо Браге, после смерти последнего получил непревзойдённые по точности результаты наблюдений планет, проводившихся в течение более чем 20 лет. Особое внимание Кеплера привлёк Марс, в движении которого он обнаружил значительные отступления от всех прежних теорий. Ценой огромного труда и длительных вычислений ему удалось найти 3 закона движения планет, сыгравших важную роль в развитии небесной механики (т. н. Кеплера законы), 1-й закон, гласящий, что планеты движутся по эллипсам, в фокусе которых находится Солнце, разрушил тысячелетнее представление о том, что орбиты планет обязательно должны быть окружностями. 2-й закон определил переменную скорость движения планеты по орбите, 3-й закон установил математическую связь между размерами эллиптических орбит и периодами обращения планет вокруг Солнца. Таблицы движения планет, составленные Кеплером на основании этих законов, намного превзошли по точности все прежние и оставались в употреблении в течение всего 17 в.
Дальнейший прогресс А. тесно связан с развитием математики и аналитической механики, с одной стороны, и с успехами оптики и астрономического приборостроения — с другой, фундаментом небесной механики явился закон всемирного тяготения, открытый И. Ньютоном в 1685 (Ньютона закон тяготения). Следствием этого закона оказались и законы Кеплера, но лишь для того частного случая, когда планета движется под влиянием притяжения одного лишь центрального тела — Солнца. Выяснилось, что в реальном случае, при наличии взаимного притяжения между всеми телами Солнечной системы, движение планет сложнее, чем описываемое законами Кеплера, и если они всё же соблюдаются с хорошим приближением, то это результат сильного преобладания притяжения массивного Солнца над притяжением всех остальных планет. Гравитационная сила, выражающаяся простой формулой в случае притяжения между двумя материальными точками, приводит к очень сложным математическим построениям в случае нескольких точек или притяжения между телами, состоящими из многих материальных точек. Именно такими являются все тела Солнечной системы, да и все космические тела вообще. Лишь благодаря трудам многих математиков, прежде всего Ньютона, затем Ж. Лагранжа, Л. Эйлера, П. Лапласа, К. Гаусса и ряда др., сложнейшая задача о движении, фигурах и вращении планет с их спутниками была решена с высокой точностью. Блестяще подтвердившееся предсказание английского астрономом Э. Галлеем следующего появления кометы, носящей теперь его имя, и вычисление французским учёным А. Клеро момента прохождения кометы через перигелий в 1759, открытие в 1846 Нептуна по вычислениям французского астронома У. Леверье, обнаружение на основе вычислений невидимых спутников у некоторых звёзд (у Сириуса и Проциона немецкого астрономом Ф. Бесселем в 1844), впоследствии увиденных в большие телескопы, явились блестящими подтверждениями того, что движение небесных тел происходит в основном под действием гравитационных сил. Наиболее сложным является движение Луны вокруг Земли, но и его удалось представить с почти исчерпывающей точностью. Остававшиеся в движении Луны небольшие отклонения от теории, которые раньше приписывались какому-то негравитационному влиянию, в 20 в. объяснились ошибками в измерениях времени вследствие неравномерности вращения Земли. Т. о., небесная механика, пользуясь данными, доставляемыми астрометрией, оказалась в состоянии объяснить и пред вычислить с очень высокой точностью почти все движения, наблюдаемые как в Солнечной системе, так и в Галактике, и подготовить почву для труднейших экспериментов — запусков искусств, спутников Земли и космических зондов.