Their opposite charges, however, set up a strong mutual attraction that cannot, within limits, be gainsaid. An elec tron and ia proton therefore approach closely and then maintain themselves at a wary distance, forming the hy drogen atom.

Individual protons can cling together despite electro magnetic repulsion because of the existence of a very short-range nuclear strong interaction force that sets up an attraction between neighboring protons that far over balances the electromagnetic repulsion. This makes atoms other than hydrogen possible.

In short: nuclear forces dominate the atomic nucleus; electromagnetic forces dominate the atom itself; and grav itational forces dominate the large astronomic bodies.

The weakness of the gravitational force is a source of frustration to physicists.

The different forces, you see, make themselves felt by transfers of particles. The nuclear strong interaction force, the strongest of all, makes itself evident by transfers of pions (pi-mesons), while the electromagnetic force (next strongest) does it by the transfer of photons. An analogous particle involved in weak interactions (third strongest) has recently been reported. It is called the "W particle" and as yet the report is a tentative one.

So far, so good. It seems, then, that if gravitation is a force in the same sense that the others are, it should make itself evident by transfers of particles.

Physicists have given this particle a name, the "graviton."

They have even decided on its properties, or lack of prop erties. It is electrically neutral and without mass. (Because it is without mass, it must travel at an unvarying velocity, that of light.) It is stable, too; that is, left to itself, it Will not break down to form other particles.

So far, it is rather like the neutrino, [See Chapter 13 of my book View from a Height, Doubleday, 1963.] hich is also stable, electrically neutral, and massless (hence traveling at the velocity of light).

The graviton and the neutrino differ in some respects, however. The neutrino comes in two varieties, an electron neutrino and a muon (mu-meson) neutrino, each with its anti-particle; so there are, all told, four distinct kinds of neutrinos. The graviton comes in but one variety and is its own anti-particle. There is but one kind of graviton.

Then, too, the graviton has a spin of a type that is as signed the number 2, while the neutrino along with most other subatomic particles have spins of 1/2. (There are also some mesons with a spin of 0 and the photon with a spin of 1.)

The graviton has not yet been detected. It is even more elusive than the neutrino. The neutrino, while massless and chargeless, nevertheless has a measurable energy con tent. Its existence was first suspected, indeed, because it carried off enough energy to make a sizable gap in the bookkeeping.

But gravitons?

Well, remember that factor of 10421

An individual graviton must be trillions of trillions of trillions of times less energetic than a neutrino. Considering how difficult it was to detect the neutrino, the detection of the graviton is a problem that will really test the nuclear physicist.

9. The Black Of Night

I suppose many of you are familiar with the comic strip "Peanuts." My daughter Robyn (now in the fourth grade) is very fond of it, as I am myself.

She came to me one day, delighted with a particular sequence in which one of the little characters in "Peanuts" asks his bad-tempered older sister, "Why is the sky blue,?" and she snaps back, "Because it isn't green!"

When Robyn was all through laughing, I thought I would seize the occasion to maneuver the conversation in the direction of a deep and subtle scientific discussion (entirely for Robyn's own good, you understand). So I said, "Wen, tell me, Robyn, why is the night sky black?"

And she answered at once (I suppose I ought to have foreseen it), "Because it isn't purple!"

Fortunately, nothing like this can ever seriously frustrate me. If Robyn won't cooperate, I can always turn, with a snarl, on the Helpless Reader. I will discuss the blackness of the night sky with youl

Ile story of the black of night begins with a German physician and astronomer, Heinrich Wilhelm Matthias Olbers, bom in 1758. He practiced astronomy as a hobby, and in midlife suffered a peculiar disappointment. It came about in this fashion…

Toward the end of the eighteenth century, astronomers began to suspect, quite strongly, that some sort of planet must exist between the orbits of Mars and Jupiter. A team of German astronomers, of whom Olbers was one of the most important, set themselves up with the intention of dividing the ecliptic among themselves and each searching his own portion, meticulously, for the planet.

Olbers and his friends were so systematic and thorough that by rights they should have discovered the planet and received the credit of it. But life is funny (to coin a phrase).

While they were still arranging the details, Giuseppe Piazzi, an Italian astronomer who wasn't looking for planets at all, discovered, on the night of January 1, 1801, a point of light which had shifted its position against the background of stars. He followed it for a period of time and found it was continuing to move steadily. It moved less rapidly than

Mars and more rapidly than Jupiter, so it was very likely a planet in an intermediate orbit. He reported it as such so :hat it was the casual Piazzi and not the thorough Olbers who got the nod in the history books.

Olbers didn't lose out altogether, however. It seems that after a period of time, Piazzi fell sick and was unable to continue his observations. By the time he got back to the telescope the planet was too close to the Sun to be observ able.

Piazzi didn't have enough observations to calculate an orbit and this was bad. It would take months for the slow-moving planet to get to the other side of the Sun and into observable position, and without a calculated orbit it might easily take years to rediscover it.

Fortunately, a young German mathematician, Karl Friedrich Gauss, was just blazing his way upward into the mathematical firmament. He had worked out something called the "method of least squares," which made it possible to calculate a reasonably good orbit from no more than three good observations of a planetary position.

Gauss calculated the orbit of Piazzi's new planet, and when it was in observable range once more there was Olbers and his telescope watching the place where Gauss's calcula tions said it would be. Gauss was right and, on January 1, 1802, Olbers found it.

To be sure, the new planet (named "Ceres") was a peculiar one, for it turned out to be less than 500 miles in diameter. It was far smaller than any other known planet and smaller than at least six of the satellites known at that time.

Could Ceres be all that existed between Mars and Jupiter? The German astronomers continued looking (it would be a shame to waste all that preparation) and sure enough, three more planets between Mars and Jupiter were soon discovered. Two of them, Pallas and Vesta, were dis covered by Olbers. (In later years many more were discovered.)

But, of course, the big payoff isn't for second place. All Olbers got out of it was the name of a planetoid. The thou sandth planetoid between Mars and Jupiter was named "Piazzia," the thousand and first "Gaussia," and the thou sand and second (hold your breath, now) "Olberia."

Nor was Olbers much luckier in his other observations.

He specialized in comets and discovered five of them, but practically anyone can do that. There is a comet called "Olbers' Comet" in consequence, but that is a minor dis tinction.

Shall we now dismiss Olbers? By no means.

It is hard to tell just what will win you a place in the annals of science. Sometimes it is a piece of interesting reverie that does it. In 1826 Olbers indulged himself in an idle speculation concerning the black of night and dredged out of it an'apparently ridiculous conclusion.

Yet that speculation became "Olbers' paradox," which has come to have profound significance a century after ward. In fact, we can begin with Olbers' paradox and end with the conclusion that the only reason life exists any where in the universe is that the distant galaxies are reced ing from us.

What possible effect can the distant galaxies have on us?

Be patient now and we'll work it out.

In ancient times, if any astronomer had been asked why the night sky was black, he would have answered-quite reasonably-that it was because the light of the Sun was absent. If one had then gone on to question him why the stars did not take the place of the Sun, he would have answered-again reasonably-that the stars were limited in number and individually dim. In fact, all the stars we can see would, if lumped together, be only a half-birionth as bright as the Sun. Their influence on the blackness of the night sky is therefore insignificant.

By the nineteenth century, however, this last argument had lost its force. The number of stars was tremendous.

Large telescopes revealed them by the countless millions.

Of course, one might argue that those countless millions of stars were of no importance for they were not visible to the naked eye and therefore did not contribute to the light in the night sky. This, too, is a useless argument. The stars of the Milky Way are, individually, too faint to be made out, but en masse they make a dimly luminous belt about the sky. The Andromeda galaxy is much farther away than the stars of the Milky Way and the individual stars that make it up are not individually visible except (just barely) in a very large telescope. Yet, en masse, the Andromeda galaxy is faintly visible to the naked eye. (It'is, in fact, the farthest object visible to the unaided eye; so if anyone ever asks you how far you can see; tell him 2,000,000 light years.)

In short distant stars-no matter how distant and no matter how dim, individually-must contribute to the light of the night sky, and this contribution can even become detectable without the aid of instruments if these dim distant stars exist in sufficient density.

Olbers, who didn't know about the Andromeda galaxy, but did know about the Milky Way, therefore set about asking himself how much light ought to be expected from the distant stars altogether. He began by making several assumptions:

1. That the universe is infinite in extent.

2. That the stars are infinite in number and evenly spread throughout the universe.

3. That the stars are of uniform average brightness through all of space.