Изменить стиль страницы

The stories that evolutionary biologists tell are of the same kind, and they become science when they stop being Just-So Stories, justifications after the event, and become general principles that make predictions. These predictions are of a limited kind; 'in these circumstances expect this behaviour'. They are not predictions of the type 'On Tuesday at 7.43pm the first elephant trunk will evolve'. But this is what 'prediction' means in science: saying ahead of time that under certain conditions, certain things will happen. You don't have to predict the timing of the experiment.

An evolutionary example of this kind of pattern can be found in the co-evolution of 'creodonts', big cats like sabretooth tigers, and their 'titanothere' prey -large-hoofed mammals, often with huge horns. When it comes to improving performance for the big cats, the line of least resistance is to develop bigger teeth. Faced with that, the best response for the prey is to develop thicker skins and bigger horns. An evolutionary arms race now becomes pretty much unavoidable: the cats get bigger and bigger teeth, and the prey respond with thicker and thicker skins ... to which the cats' only response is even bigger teeth ... and so it goes. An evolutionary arms race sets in, with both species trapped in a single strategy. The end result is that the cats' teeth get so enormous that the poor animals can hardly move their heads, while the titanotheres' skins, and multiple horns on nose and brow, and associated musculature, get so heavy that they find trouble dragging themselves across the plains. Both species promptly die out.

This creodont-titanothere arms race has happened at least five times in evolutionary history, taking about five million years to run its course on each occasion. It is a striking example of an emergent pattern, and the fact that it plays out in exactly the same way over and over again confirms that there really is an underlying dynamic. In all likelihood it would be happening again, now, except for the arrival of humans, who have clobbered both the big cats and their slow prey.

Notice that we've been calling these system-level patterns 'stories', and so they are. They have a narrative, a consistent internal logic; they have a beginning and an end. They are stories because they cannot be 'reduced' to an entity-level description; that would be more like an interminable soap opera. 'Well, this electron bumped into that electron and the two of them got together and emitted a photon ...' repeated, with slight variations, a truly inconceivable number of times.

One of the central questions about emergent dynamics is: what would happen if we ran the system again, in slightly different circumstances? Would the same patterns emerge, or would we see something completely different? If European history in the early twentieth century was rerun, but without Adolf Hitler, would World War II have happened anyway, by a different route? Or would it all have been sweetness and light? Historically, this is a crucial question. There is no doubting that Hitler was instrumental in starting World War II; the deeper question here is whether he was a product of the politics of the time, and in his absence someone else would have done much the same, or whether it was Hitler who moulded history and created a war when otherwise nothing would have happened.

At risk of being controversial, we are inclined to the view that World War II was a pretty much inevitable consequence of the political situation in the 1930s, with Germany saddled with huge reparations for World War I, the trains not running on time ... and Hitler was merely the medium through which the national will to war was expressed. But it's not the answer that concerns us here: it is the nature of the question. It is a 'what if' question, and it is about historical phase space. It does not ask what happened; it asks what might have happened instead.

This point is well understood on Discworld. In Lords and Ladies we find the following passage: There are indeed such things as parallel universes, although parallel is hardly the right word universes swoop and spiral around one another like some mad weaving machine or a squadron of Yossarians72 with middle-ear trouble.

And they branch. But, and this is important, not all the time. The universe doesn't much care if you tread on a butterfly. There are plenty more butterflies. Gods might note the fall of a sparrow but they don't make any effort to catch them.

Shoot the dictator and prevent the war? But the dictator is merely the tip of the whole festering boil of social pus from which dictators emerge; shoot one and there'll be another one along in a minute. Shoot him too? Why not shoot everyone and invade Poland? In fifty years', thirty years', ten years' time the world will be very nearly back on its old course. History always has a great weight of inertia.

Almost always ...

At circle time, when the walls between this and that are thinner, when there are all sorts of strange leakages ... Ah, then choices are made, then the universe can be sent careening down a different leg of the well-known Trousers of Time.

This kind of question can be asked of any dynamical system, emergent or not; but it takes on a special aspect when the dynamic 'makes itself up as it goes along'. In a rerun, would it make up the same thing? Would it tell the same story? If so, that story is robust; it has a degree of inevitability, not just in some particular run of history, but in all of them.

Science fiction writers explore historical phase space in 'alternate73 universe' stories, where one historical event is changed and the author develops possible consequences. Philip K. Dick's The Man in the High Castle explores a history in which Germany won World War II. Harry Harrison's West of Eden trilogy explores a world in which the K/T meteorite missed and the dinosaurs survived. Science writers also ask about historical phase space, especially in the context of evolution. The most celebrated example is Stephen Jay Gould's Wonderful Life, which asks whether humans would arise again on Earth if evolution were to be run again. His answer,

'no', rests on a very literal interpretation of 'human'. Harrison's answer in West of Eden is that intelligent mosasaurs -contemporaries of the dinosaurs that had returned to the sea -would evolve, and play the same role on the evolutionary stage that humans have played in this world.

(For plot reasons he also has genuine humans in his alternate universe, but the Yilane, the smart mosasaur descendants, were there first.)

Where Gould sees divergence and massive changes brought about by chance events, Harrison sees convergence: same play, different actors. To Gould, a change of actor is significant; to Harrison, what matters is the play. Both have good arguments to present, but the main point is that they are tackling different questions.

A second way in which science fiction writers explore alternative historical tracks is through the time travel story, and this brings us back to the wizards of Unseen University and their battle against the elves. There are two kinds of time travel story. In the first kind, the protagonists mainly use their ability to travel in time as a way of observing the past or future; a good example is the first significant time travel novel, H.G Wells's The Time Machine of 1895. The time machine is a vehicle for Wells to discuss the future of humanity, but his Time Traveller makes no real effort to change history. In contrast, the narrative theme of Robert Silverberg's 1969 novel Up the Line is the paradoxes that arise if it is possible to travel into the past and change it.

In this story, the Time Service does not set out to change the past; on the contrary, its prime objective is to preserve the past and avoid paradoxes, despite the activities of observers from the future, who are cataloguing the past by visiting it and seeing what actually happened.