Изменить стиль страницы

Paul Davies's view here is that 'as with all arrows of time, there is a puzzle about where the asymmetry comes in ... The asymmetry must therefore be traced to initial conditions'. What he means here is that even with time-reversible laws, you can get different behaviour by starting the system in a different way. If you start with an egg and stir it with a fork, then it scrambles. If you start with the scrambled egg, and very very carefully give each tiny particle of egg exactly the right push along precisely the opposite trajectory, then it will unscramble. The difference lies entirely in the initial state, not in the laws. Notice that 'stir with a fork' is a very general kind of initial condition: lots of different ways to stir will scramble the egg. In contrast, the initial condition for unscrambling an egg is extremely delicate and special.

In a way this is an attractive option. Our clumping universe is like an unscrambling egg: its increasing complexity is a consequence of very special initial conditions. Most 'ordinary' initial conditions would lead to a universe that isn't clumped -just as any reasonable kind of stirring leads to a scrambled egg. And observations strongly suggest that the universe's initial conditions at the time of the Big Bang were extremely smooth, whereas any 'ordinary' state of a gravitational system presumably should be clumped. So, in agreement with the suggestion just outlined, it seems that the initial conditions of the universe must have been very special -an attractive proposition for those who believe that our universe is highly unusual, and ditto for our place within it.

From the Second Law to God in one easy step.

Roger Penrose has even quantified how special this initial state is, by comparing the thermodynamic entropy of the initial state with that of a hypothetical but plausible final state in which the universe has become a system of Black Holes. This final state shows an extreme degree of dumpiness - though not the ultimate degree, which would be a single giant Black Hole.

The result is that the entropy of the initial state is about l030 times that of the hypothetical final state, making it extremely special. So special, in fact, that Penrose was led to introduce a new time-asymmetric law that forces the early universe to be exceptionally smooth.

Oh, how our stories mislead us ... There is another, much more reasonable, explanation. The key point is simple: gravitation is very different from thermodynamics. In a gas of buzzing molecules, the uniform state -equal density everywhere -is stable. Confine all the gas into one small part of a room, let it go, and within a split second it's back to a uniform state. Gravity is exactly the opposite: uniform systems of gravitating bodies are unstable. Differences smaller than any specific level of coarse-graining not only can 'bubble up' into macroscopic differences as time passes, but do.

Here lies the big difference between gravity and thermodynamics. The thermodynamic model that best fits our universe is one in which differences dissipate by disappearing below the level of coarse-graining as time marches forwards. The gravitic model that best fits our universe is one in which differences amplify by bubbling up from below the level of coarse-graining as time marches forwards. The relation of these two scientific domains to coarse-graining is exactly opposite when the same arrow of time is used for both.

We can now give a completely different, and far more reasonable, explanation for the 'entropy gap' between the early and late universes, as observed by Penrose and credited by him to astonishingly unlikely initial conditions. It is actually an artefact of coarse-graining.

Gravitational clumping bubbles up from a level of coarse-graining to which thermodynamic entropy is, by definition, insensitive. Therefore virtually any initial distribution of matter in the universe would lead to clumping. There's no need for something extraordinarily special.

The physical differences between gravitating systems and thermodynamic ones are straightforward: gravity is a long-range attractive force, whereas elastic collisions are short-range and repulsive. With such different force laws, it is hardly surprising that the behaviour should be so different. As an extreme case, imagine systems where gravity' is so short range that it has no effect unless particles collide, but then they stick together forever. Increasing dumpiness is obvious for such a force law.

The real universe is both gravitational and thermodynamic. In some contexts, the thermodynamic model is more appropriate and thermodynamics provides a good model. In other contexts, a gravitational model is more appropriate. There are yet other contexts: molecular chemistry involves different types of forces again. It is a mistake to shoehorn all natural phenomena into the thermodynamic approximation or the gravitic approximation. It is especially dubious to expect both thermodynamic and gravitic approximations to work in the same context, when the way they respond to coarse-graining is diametrically opposite.

See? It's simple. Not magical at all ...

Perhaps it's a good idea to sum up our thinking here.

The 'laws' of thermodynamics, especially the celebrated Second Law, are statistically valid models of nature in a particular set of contexts. They are not universally valid truths about the universe, as the clumping of gravity demonstrates. It even seems plausible that a suitable measure of gravitational complexity, like thermodynamic entropy but different, might one day be defined -call it 'gravtropy', say. Then we might be able to deduce, mathematically, a 'second law of gravities', stating that the gravtropy of a gravitic system increases with time. For example, gravtropy might perhaps be the fractal dimension ('degree of intricacy') of the system.

Even though coarse-graining works in opposite ways for these two types of system, both 'second laws' -thermodynamic and gravitic -would correspond rather well to our own universe. The reason is that both laws are formulated to correspond to what we actually observe in our own universe. Nevertheless, despite this apparent concurrence, the two laws would apply to drastically different physical systems: one to gases, the other to systems of particles moving under gravity.

With these two examples of the misuse of information-theoretic and associated thermodynamic principles behind us, we can turn to the intriguing suggestion that the universe is made from information.

Ridcully suspected that Ponder Stibbons would invoke 'quantum' to explain anything really bizarre, like the disappearance of the Shell Midden People. The quantum world is bizarre, and this kind of invocation is always tempting. In an attempt to make sense of the quantum universe, several physicists have suggested founding all quantum phenomena (that is, everything) on the concept of information. John Archibald Wheeler coined the phrase 'It from Bit' to capture this idea. Briefly, every quantum object is characterised by a finite number of states. The spin of an electron, for instance, can either be up or down, a binary choice. The state of the universe is therefore a huge list of ups and downs and more sophisticated quantities of the same general kind: a very long binary message.

So far, this is a clever and (it turns out) useful way to formalise the mathematics of the quantum world. The next step is more controversial. All that really matters is that message, that list of bits.

And what is a message? Information. Conclusion: the real stuff of the universe is raw information. Everything else is made from it according to quantum principles. Ponder would approve.

Information thereby takes its place in a small pantheon of similar concepts -velocity, energy, momentum -that have made the transition from convenient mathematical fiction to reality.