Изменить стиль страницы

The headless, anarchic, million-limbed Internet is spreading like bread-mold. Any computer of sufficient power is a potential spore for the Internet, and today such computers sell for less than $2,000 and are in the hands of people all over the world. ARPA's network, designed to assure control of a ravaged society after a nuclear holocaust, has been superceded by its mutant child the Internet, which is thoroughly out of control, and spreading exponentially through the post-Cold War electronic global village. The spread of the Internet in the 90s resembles the spread of personal computing in the 1970s, though it is even faster and perhaps more important. More important, perhaps, because it may give those personal computers a means of cheap, easy storage and access that is truly planetary in scale.

The future of the Internet bids fair to be bigger and exponentially faster. Commercialization of the Internet is a very hot topic today, with every manner of wild new commercial information- service promised. The federal government, pleased with an unsought success, is also still very much in the act. NREN, the National Research and Education Network, was approved by the US Congress in fall 1991, as a five-year, $2 billion project to upgrade the Internet "backbone." NREN will be some fifty times faster than the fastest network available today, allowing the electronic transfer of the entire Encyclopedia Britannica in one hot second. Computer networks worldwide will feature 3-D animated graphics, radio and cellular phone-links to portable computers, as well as fax, voice, and high- definition television. A multimedia global circus!

Or so it's hoped -- and planned. The real Internet of the future may bear very little resemblance to today's plans. Planning has never seemed to have much to do with the seething, fungal development of the Internet. After all, today's Internet bears little resemblance to those original grim plans for RAND's post- holocaust command grid. It's a fine and happy irony.

How does one get access to the Internet? Well -- if you don't have a computer and a modem, get one. Your computer can act as a terminal, and you can use an ordinary telephone line to connect to an Internet-linked machine. These slower and simpler adjuncts to the Internet can provide you with the netnews discussion groups and your own e-mail address. These are services worth having -- though if you only have mail and news, you're not actually "on the Internet" proper.

If you're on a campus, your university may have direct "dedicated access" to high-speed Internet TCP/IP lines. Apply for an Internet account on a dedicated campus machine, and you may be able to get those hot-dog long-distance computing and file-transfer functions. Some cities, such as Cleveland, supply "freenet" community access. Businesses increasingly have Internet access, and are willing to sell it to subscribers. The standard fee is about $40 a month -- about the same as TV cable service.

As the Nineties proceed, finding a link to the Internet will become much cheaper and easier. Its ease of use will also improve, which is fine news, for the savage UNIX interface of TCP/IP leaves plenty of room for advancements in user-friendliness. Learning the Internet now, or at least learning about it, is wise. By the turn of the century, "network literacy," like "computer literacy" before it, will be forcing itself into the very texture of your life.

For Further Reading:

The Whole Internet Catalog & User's Guide by Ed Krol. (1992) O'Reilly and Associates, Inc. A clear, non-jargonized introduction to the intimidating business of network literacy. Many computer- documentation manuals attempt to be funny. Mr. Krol's book is *actually* funny.

The Matrix: Computer Networks and Conferencing Systems Worldwide. by John Quarterman. Digital Press: Bedford, MA. (1990) Massive and highly technical compendium detailing the mind-boggling scope and complexity of our newly networked planet.

The Internet Companion by Tracy LaQuey with Jeanne C. Ryer (1992) Addison Wesley. Evangelical etiquette guide to the Internet featuring anecdotal tales of life-changing Internet experiences. Foreword by Senator Al Gore.

Zen and the Art of the Internet: A Beginner's Guide by Brendan P. Kehoe (1992) Prentice Hall. Brief but useful Internet guide with plenty of good advice on useful machines to paw over for data. Mr Kehoe's guide bears the singularly wonderful distinction of being available in electronic form free of charge. I'm doing the same with all my F&SF Science articles, including, of course, this one. My own Internet address is [email protected].

"Magnetic Vision"

Here on my desk I have something that can only be described as

miraculous. It's a big cardboard envelope with nine thick sheets of

black plastic inside, and on these sheets are pictures of my own brain.

These images are "MRI scans" -- magnetic resonance imagery from

a medical scanner.

These are magnetic windows into the lightless realm inside my

skull. The meat, bone, and various gristles within my head glow gently

in crisp black-and-white detail. There's little of the foggy ghostliness

one sees with, say, dental x-rays. Held up against a bright light, or

placed on a diagnostic light table, the dark plastic sheets reveal veins,

arteries, various odd fluid-stuffed ventricles, and the spongey wrinkles

of my cerebellum. In various shots, I can see the pulp within my own

teeth, the roots of my tongue, the boney caverns of my sinuses, and the

nicely spherical jellies that are my two eyeballs. I can see that the

human brain really does come in two lobes and in three sections, and

that it has gray matter and white matter. The brain is a big whopping

gland, basically, and it fills my skull just like the meat of a walnut.

It's an odd experience to look long and hard at one's own brain.

Though it's quite a privilege to witness this, it's also a form of

narcissism without much historical parallel. Frankly, I don't think I

ever really believed in my own brain until I saw these images. At least,

I never truly comprehended my brain as a tangible physical organ, like

a knuckle or a kneecap. And yet here is the evidence, laid out

irrefutably before me, pixel by monochrome pixel, in a large variety of

angles and in exquisite detail. And I'm told that my brain is quite

healthy and perfectly normal -- anatomically at least. (For a science

fiction writer this news is something of a letdown.)

The discovery of X-rays in 1895, by Wilhelm Roentgen, led to the

first technology that made human flesh transparent. Nowadays, X-rays

can pierce the body through many different angles to produce a

graphic three-dimensional image. This 3-D technique, "Computerized

Axial Tomography" or the CAT-scan, won a Nobel Prize in 1979 for its

originators, Godfrey Hounsfield and Allan Cormack.

Sonography uses ultrasound to study human tissue through its

reflection of high-frequency vibration: sonography is a sonic window.

Magnetic resonance imaging, however, is a more sophisticated

window yet. It is rivalled only by the lesser-known and still rather

experimental PET-scan, or Positron Emission Tomography. PET-

scanning requires an injection of radioactive isotopes into the body so

that their decay can be tracked within human tissues. Magnetic

resonance, though it is sometimes known as Nuclear Magnetic

Resonance, does not involve radioactivity.

The phenomenon of "nuclear magnetic resonance" was