Активация работы гена регулятора может происходить либо за счет воздействия конечного продукта работы всего гена, либо через продукты метаболизма этого белка.

Рис.7. Схема регуляции активности гена [3].

Итак, у нас есть все предпосылки для того, чтобы вышеуказанную схему, не изменяя сущности материальных процессов, видоизменить в схему информационных потоков и их взаимодействий на принципах гомеостатического регулирования. Информационные потоки функционально можно представить как два встречно направленных потока. Первый - из внешней среды внутрь области гена. Внешняя среда воздействует на оперон гена-регулятора и оперон структурного гена, включая или выключая его активность. Второй поток это воздействие информации продуцируемой внутри гена на собственные внутренние структуры; опять же на опероны гена регулятора и структурного гена. Эффектор может оказаться веществом, которое синтезируется другими генами или собственной продукцией. Вся продуцируемая информация поступает в окружающую среду и взаимодействует с рецепторами входов на конкурсной основе, т.о. при передаче информации необходимо учитывать скорость диффузии и концентрацию вещества переносчика.

I(t) = F(d,k)

Накладывая обе функциональные схемы друг на друга мы получим уже известную нам модель гомеостата (рис.8).

Рис.8. Модель гомеостатической схемы работы гена.

Обозначения: О - оперон, Б - белковая молекула, R - рибосома

В этой схеме интересно отметить тот момент, что даже внутри гомеостата происходит неоднократная перекодировка информационных потоков с одного вида носителя на другой. Продуктом гена-регулятора и структурного гена является иРНК, чтобы информация, записанная на ней, достигла своего адресата должна произойти трансляция через рибосому и образоваться белковая форма.

Гомеостатическая модель механизма транскрипции

Транскрипция информационной РНК происходит на одной из нитей двойной ДНК. Для этого нити ДНК в этом месте должны быть расплетены. Синтез иРНК на матрице ДНК осуществляется РНК-полимеразой. Одновременно с одной единицы транскрипции ведут синтез многие молекулы РНК-полимеразы. В узнавании знака начала и конца синтеза иРНК участвуют специальные белки. Место начала транскрипции называют промотором. Место окончания транскрипции терминатором. Максимально возможная длина участка, на котором происходит синтез иРНК называют скриптоном. По мере развития организма от одной клетки к эмбриону и далее к взрослому организму спектр иРНК меняется в зависимости от зрелости и специализации клеток. Таким образом имеется надклеточная регуляция, с одной стороны, включения одних и выключения других скриптонов, с другой - размерами синтезированной иРНК, что естественно приводит к изменению величины и свойств транслируемых белков.

Рис.9. Схема модели гомеостата транскрипции иРНК на ДНК.

О гомеостатической модели репликации генетической информации

Репликация гена происходит почти по аналогичной схеме, но в едином механизме удвоения всей хромосомы. Начало удвоения ДНК происходит всегда с одного и того же места и идет полярно в обе стороны, пока удвоение ДНК не достигает конечной или исходной точки, если ДНК кольцевая, как у бактерий. Участок, с которого начинается репликация, называется репликатором. Фермент, обеспечивающий процесс репликации - ДНК-полимераза. Информация о строении вещества инициатора репликатора записана на ДНК в его структурном гене. Структурный ген инициатора вместе с локусом начала репликации генетики называют "репликоном". У эукариотов имеется много независимых единиц репликации (репликонов) на хромосоме. Белок-инициатор вызывает репликацию только своего репликона и не действует на другие хромосомы. Скорость синтеза ДНК регулируется наличием и скоростью поступления соответствующих дезоксинуклеотидов. Специфика синтезируемой ДНК определяется самой копируемой матрицей, на которой идет синтез. Фермент ДНК-полимераза неспецифичен для хромосом и является одним и тем же для любых матриц ДНК [131,132].

Рис. 10. Схема синтеза ДНК при репликации хромосомы.

О структурно-функциональной организации хромосомы эукариот пока нет достаточных знаний, чтобы можно было смоделировать схему гомеостатического управления активности как единого гомеостата. Общее представления о хромосоме даст следующая фраза:

"Хромосома - комплексное, динамическое надмолекулярное образование, выполняющее такие генетические, биохимические и механические функции, как репликация, транскрипция, в определенной степени регуляция генной активности и сегрегация, осуществляемая с помощью митоза и мейоза. Реализация этих функций связана со значительными конформационными перестройками молекулярных составляющих хромосом путем обратимых межмолекулярных взаимодействий. Хромосома способна при клеточной дифференцировке либо на разных стадиях клеточного цикла утрачивать (ослаблять) или усиливать (приобретать) какое-либо из перечисленных структурно-функциональных свойств." [131, с.193].

Гомеостатическая модель трансляции

Трансляция обеспечивает перевод информации, записанной в форме линейной последовательности сочетаний четырех нуклеотидов по три на иРНК, в пептидную последовательность аминокислотных остатков, образующих белок.

Белки клетки, имеющие различную структуру и различные "обязанности" в клетке, синтезируются в едином аппарате трансляции. Основные принципы организации этого аппарата одинаковы для всех типов клеток, хотя существуют некоторые отличия между эукариотами и прокариотами.

Трансляция осуществляется следующими компонентами клетки: рибосома, состоящая из 50S и 30S субъединиц, информационная РНК, транспортные РНК и ряд белковых факторов трансляции.

Информационная РНК несет на себе кодон начала считывания "генетической фразы" и кодон-терминатор, обозначающий конец трансляции (конец считывания информации о белке). Начало и конец "фразы" опознается специальными белками во взаимодействии с рибосомой. Рибосома является главным организующим центром процесса трансляции и обеспечивает инициацию трансляции, полимеризацию аминокислотных остатков, транслокацию рибосомы вдоль матрицы иРНК, терминацию и т.д. Транспортные РНК (тРНК) обеспечивают опознавание отдельных аминокислот и узнают соответствующие им кодоны иРНК на рибосомах, благодаря чему выстраивают аминокислотные остатки в соответствии с чередованием кодонов иРНК.

Рис.11. Модель гомеостата трансляции.

О КЛЕТОЧНОМ СИММЕТРИЧНОМ ГОМЕОСТАТЕ

Все описанные в предыдущей главе механизмы гомеостатической работы генетического аппарата не являются самодостаточными, так как принадлежат к звеньям работы сложного биохимического гомеостата целой клетки и поэтому сильно взаимозависимы друг от друга и переносчика веществ - клеточной протоплазмы. Несимметричность этих гомеостатов заключается либо в превышении входов (воздействующих веществ на инициацию активности), либо в превышении выходов над входами (потребность синтезируемых веществ многими другими гомеостатами).

Одноклеточное животное, растение (бактерия) имеют большую свободу воли и некоторым образом может пассивно или активно управлять потоками информации из внешней среды (менять проницаемость мембраны или перемещаться в более благоприятное место). Клеточное строение организмов распространено настолько широко, а свойства клеток имеют столь важное значение для поведения организма и всей экосистемы в целом, что их принято рассматривать как "третий основной уровень биологической организации"[37].

Состав основных структурно-функциональных единиц клетки

Уникальность свойств клетки определяется организацией ее внутреннего строения. В настоящей главе мы будем рассматривать клетку на уровне ее функциональных структур, называемых клеточными органеллами. Клетка отделена от окружающей среды клеточной мембраной, которая может снаружи формировать (например, у растений) клеточную стенку. В цитоплазме располагаются клеточные органеллы, которые погружены в цитоплазматический ретикулюм. Самой большой органеллой является ядро, окруженное у эукариотов ядерной мембраной и содержащее внутри основную программу своего развития и размножения хромосомы и ядрышко. К другим органеллам относятся митохондрии, цитоплазматическая сеть, комплекс Гольджи, лизосомы, центриоли, пластиды (у растений), базальные тельца, вакуоли.