Изменить стиль страницы

Каким образом Солнце может влиять на движение Земли через пустое пространство? Как вообще понимать возможность действия через пустое пространство? Закон тяготения не дает ответа на этот вопрос, и сам Ньютон вполне это понимал. И он сам, и его современники Гюйгенс и Лейбниц предостерегали против попыток видеть в законе Ньютона решение проблемы действия через пустое пространство; для них этот закон был просто формулой для вычислений . Тем не менее, огромные достижения физики и астрономии, возможные благодаря использованию закона Ньютона, стали причиной того, что ученые забыли эти предостережения; и постепенно укрепилось мнение, что Ньютон открыл силу притяжения.

Хвольсон пишет в своем «Курсе физики»:

Термин «действие на расстоянии» обозначает одну из самых вредных доктрин, когда-либо возникавших в физике и тормозивших ее прогресс; эта доктрина допускает возможность мгновенного воздействия одного предмета на другой, находящийся на таком расстоянии от него, что непосредственный их контакт оказывается невозможным.

В первой половине XIX века идея действия на расстоянии господствовала в науке безраздельно. Фарадей был первым, кто указал на недопустимость воздействия какого-то тела на некоторую точку, в которой это тело не расположено, без промежуточной среды . Оставив в стороне вопрос о всемирном тяготении, он обратил особое внимание на явления электричества и магнетизма и указал на чрезвычайно важную роль в этих явлениях «промежуточной среды», которая заполняет пространство между телами, как будто бы действующими друг на друга непосредственно.

В настоящее время убеждение о недопустимости действия на расстоянии в любой сфере физических явлений получило всеобщее признание.

Однако старая физика смогла отбросить действие на расстоянии лишь после того, как приняла гипотезу универсальной среды , или эфира. Эта гипотеза оказалась необходимой и для теории световых и электрических явлений, как они понимались старой физикой.

В XVIII веке световые явления объяснялись гипотезой излучения, выдвинутой в 1704 году Ньютоном. Эта гипотеза предполагала, что светящиеся тела излучают во всех направлениях мельчайшие частицы особой световой субстанции, которые распространяются в пространстве с огромной скоростью и, попадая в глаз, вызывают в нем ощущение света. В этой гипотезе Ньютон развивал идеи древних; у Платона, например, часто встречается выражение: «свет наполнил мои глаза».

Позднее, главным образом в XIX веке, когда внимание исследователей обратилось на те последствия световых явлений, которые невозможно объяснить гипотезой излучения, широкое распространение получила другая гипотеза, а именно, гипотеза волновых колебаний эфира. Впервые она была выдвинута голландским физиком Гюйгенсом в 1690 году, однако в течение долгого времени не принималась наукой. Впоследствии исследование дифракции все-таки качнуло чашу весов в пользу гипотезы световых вон и против гипотезы излучения; а последующие труды физиков в области поляризации света завоевали этой гипотезе всеобщее признание.

В волновой гипотезе световые явления объясняются по аналогии со звуковыми. Подобно тому, как звук есть результат колебаний частиц звучащего тела и распространяется благодаря колебаниям частиц воздуха или иной упругой среды, так, согласно этой гипотезе, и свет есть результат колебаний молекул светящегося тела, а его распространение происходит благодаря колебаниям чрезвычайно упругого эфира, заполняющего как межзвездные, так и межмолекулярные пространства.

В XIX веке теория колебаний постепенно стала основанием всей физики. Электричество, магнетизм, тепло, свет, даже мышление и жизнь (правда, чисто диалектически) объяснялась с точки зрения теории колебаний. Нельзя отрицать, что для явлений света и электромагнетизма теория колебаний давала очень удобные и простые формулы для вычислений. На основе теории колебаний был сделан целый ряд блестящих открытий и изобретений.

Но для теории колебаний требовался эфир. Гипотеза об эфире возникла для объяснения самых разнородных явлений, и потому эфир приобрел довольно странные и противоречивые свойства. Он вездесущ; он заполняет всю вселенную, пронизывает все ее точки, все атомы и межатомные пространства. Он непрерывен и обладает абсолютной упругостью; однако он настолько разрежен, тонок и проницаем, что все земные и небесные тела проходят сквозь него, не испытывая заметного противодействия своему движению. Его разреженность настолько велика, что если бы эфир сгустился в жидкость, вся его масса в пределах Млечного Пути поместилась бы в одном кубическом сантиметре.

Вместе с тем, сэр Оливер Лодж считает, что плотность эфира в миллиард раз выше плотности воды. С этой точки зрения, мир оказывается состоящим из твердой субстанции – «эфира», – которая в миллионы раз плотнее алмаза; а известная нам материя, даже самая плотная, всего лишь пустое пространство , пузырьки в массе эфира.

Было предпринято немало попыток доказать существование эфира или обнаружить факты, подтверждающие его существование.

Так, допускалось, что существование эфира можно было бы установить, если бы удалось доказать, что какой-то луч света, движущийся быстрее, чем другой луч света, определенным образом меняет свои характеристики.

Известен следующий факт: высота звука возрастает или понижается в зависимости от того, приближается слушатель к его источнику или удаляется от него. Это так называемый принцип Доплера; теоретически его считали применимым и к свету. Он означает, что быстро приближающийся или удаляющийся предмет должен менять свой цвет – подобно тому, как гудок приближающегося или удаляющегося паровоза меняет свою высоту. Но из-за особого устройства глаза и скорости его восприятия невозможно ожидать, что глаз заметит перемену цвета, даже если она действительно имеет место.

Для установления факта изменения цвета необходимо было использовать спектроскоп, т.е. разложить луч света и наблюдать каждый цвет в отдельности. Но эти эксперименты не дали положительных результатов, так что доказать с их помощью существование эфира не удалось.