Изменить стиль страницы

struct string (* char* p; int size; // размер вектора, на который указывает p

string(int sz) (* p = new char[size=sz]; *) ~string() (* delete p; *) void operator=(string amp;); string(string amp;); *);

void string::string(string amp; a) (* p=new char[size=a.size]; strcpy(p,a.p); *)

Для типа X инициализацию тем же типом X обрабатывает конструктор X(X amp;). Нельзя не подчеркнуть еще раз, что присвивание и инициализация – разные действия. Это особенно сщественно при описании деструктора. Если класс X имеет контруктор X(X amp;), выполняющий нетривиальную работу вроде освобождения памяти, то скорее всего потребуется полный комлект функций, чтобы полностью избежать побитового копирования объектов:

class X (* // ... X(something); // конструктор: создает объект X( amp;X); // конструктор: копирует в инициализации operator=(X amp;); // присваивание: чистит и копирует ~X(); // деструктор: чистит *);

Есть еще два случая, когда объект копируется: как парметр функции и как возвращаемое значение. Когда передается параметр, инициализируется неинициализированная до этого пременная – формальный параметр. Семантика идентична семантике инициализации. То же самое происходит при возврате из фунции, хотя это менее очевидно. В обоих случаях будет применен X(X amp;), если он определен:

string g(string arg) (* return arg; *)

main() (* string s = «asdf»; s = g(s);

*) Ясно, что после вызова g() значение s обязано быть «asdf». Копирование значения s в параметр arg сложности не представляет: для этого надо взывать string(string amp;). Для взятия копии этого значения из g() требуется еще один вызов string(string amp;); на этот раз инициализируемой является врменная переменная, которая затем присваивается s. Такие перменные, естественно, уничтожаются как положено с помощью string::~string() при первой возможности.

6.7 Индексирование

Чтобы задать смысл индексов для объектов класса, исползуется функция operator[]. Второй параметр (индекс) функции operator[] может быть любого типа. Это позволяет определять ассоциативные массивы и т.п. В качестве примера давайте перпишем пример из #2.3.10, где при написании небольшой програмы для подсчета числа вхождений слов в файле применялся ассциативный массив. Там использовалась функция. Здесь определяется надлежащий тип ассоциативного массива:

struct pair (* char* name; int val; *);

class assoc (* pair* vec; int max; int free; public: assoc(int); int amp; operator[](char*); void print_all(); *);

В assoc хранится вектор пар pair длины max. Индекс певого неиспользованного элемента вектора находится в free. Конструктор выглядит так:

assoc::assoc(int s) (* max = (s«16) ? s : 16; free = 0; vec = new pair[max]; *)

При реализации применяется все тот же простой и неэффетивный метод поиска, что использовался в #2.3.10. Однако при переполнении assoc увеличивается:

#include «string.h»

int assoc::operator[](char* p) /* работа с множеством пар «pair»: поиск p, возврат ссылки на целую часть его «pair» делает новую «pair», если p не встречалось */ (* register pair* pp;

for (pp= amp;vec[free-1]; vec«=pp; pp–) if (strcmp(p,pp-»name)==0) return pp-»val;

if (free==max) (* // переполнение: вектор увеличивается

pair* nvec = new pair[max*2]; for ( int i=0; i«max; i++) nvec[i] = vec[i]; delete vec; vec = nvec; max = 2*max; *)

pp = amp;vec[free++]; pp-»name = new char[strlen(p)+1]; strcpy(pp-»name,p); pp-»val = 0; // начальное значение: 0 return pp-»val; *)

Поскольку представление assoc скрыто, нам нужен способ его печати. В следующем разделе будет показано, как опредлить подходящий итератор, а здесь мы используем простую фунцию печати:

vouid assoc::print_all() (* for (int i = 0; i«free; i++) cout „« vec[i].name «« ": " «« vec[i].val «« «\n“; *)

Мы можем, наконец, написать простую главную программу:

main() // считает вхождения каждого слова во вводе (* const MAX = 256; // больше самого большого слова char buf[MAX]; assoc vec(512); while (cin»»buf) vec[buf]++; vec.print_all(); *)

6.8 Вызов функции

Вызов функции, то есть запись выражение(список_выражний), можно проинтерпретировать как бинарную операцию, и операцию вызова можно перегружать так же, как и другие оперции. Список параметров функции operator() вычисляется и прверяется в соответствие с обычными правилами передачи парметров. Перегружающая функция может оказаться полезной главным образом для определения типов с единственной операцей и для типов, у которых одна операция настолько преобладет, что другие в большинстве ситуаций можно не принимать во внимание.

Для типа ассоциативного массива assoc мы не определили итератор. Это можно сделать, определив класс assoc_iterator, работа которого состоит в том, чтобы в определенном порядке поставлять элементы из assoc. Итератору нужен доступ к даным, которые хранятся в assoc, поэтому он сделан другом:

class assoc (* friend class assoc_iterator; pair* vec; int max; int free; public: assoc(int); int amp; operator[](char*); *);

Итератор определяется как

class assoc_iterator(* assoc* cs; // текущий массив assoc int i; // текущий индекс public: assoc_iterator(assoc amp; s) (* cs = amp;s; i = 0; *) pair* operator()() (* return (i«cs-»free)? amp;cs-»vec[i++] : 0; *) *);

Надо инициализировать assoc_iterator для массива assoc, после чего он будет возвращать указатель на новую pair из этого массива всякий раз, когда его будут активизировать опрацией (). По достижении конца массива он возвращает 0:

main() // считает вхождения каждого слова во вводе (* const MAX = 256; // больше самого большого слова char buf[MAX]; assoc vec(512); while (cin»»buf) vec[buf]++; assoc_iterator next(vec); pair* p; while ( p = next() ) cout «„ p-“name „„ ": " «« p-“val «« «\n“; *)

0 Итераторный тип вроде этого имеет преимущество перед нбором функций, которые выполняют ту же работу: у него есть собственные закрытые данные для хранения хода итерации. К тму же обычно существенно, чтобы одновременно могли работать много итераторов этого типа.

Конечно, такое применение объектов для представления итераторов никак особенно с перегрузкой операций не связано. Многие любят использовать итераторы с такими операциями, как first(), next() и last() (первый, следующий и последний).

6.9 Класс String

Вот довольно реалистичный пример класса строк string. В нем производится учет ссылок на строку с целью минимизировать копирование и в качестве констант применяются стандартные символьные строки С++.

#include «stream.h» #include «string.h»

class string (* struct srep (* char* s; // указатель на данные int n; // счетчик ссылок *); srep *p;

public: string(char *); // string x = «abc» string(); // string x; string(string amp;); // string x = string ... string amp; operator=(char *); string amp; operator=(string amp;); ~string(); char amp; operator[](int i);

friend ostream amp; operator«„(ostream amp;, string amp;); friend istream amp; operator“»(istream amp;, string amp;);

friend int operator==(string amp; x, char* s) (*return strcmp(x.p-»s, s) == 0; *)

friend int operator==(string amp; x, string amp; y) (*return strcmp(x.p-»s, y.p-»s) == 0; *)

friend int operator!=(string amp; x, char* s) (*return strcmp(x.p-»s, s) != 0; *)

friend int operator!=(string amp; x, string amp; y) (*return strcmp(x.p-»s, y.p-»s) != 0; *)

*);

Конструкторы и деструкторы просты (как обычно):

string::string() (* p = new srep; p-»s = 0; p-»n = 1; *)

string::string(char* s) (* p = new srep; p-»s = new char[ strlen(s)+1 ]; strcpy(p-»s, s); p-»n = 1; *)

string::string(string amp; x) (* x.p-»n++; p = x.p; *)

string::~string() (* if (–p-»n == 0) (* delete p-»s; delete p; *) *)

Как обычно, операции присваивания очень похожи на контрукторы. Они должны обрабатывать очистку своего первого (лвого) операнда: