Но выбор оптимальной программы - лишь первый шаг в той системе расчетов, которая необходима для достижения цели.

В самом деле, если, заложив программу управления в наш космический корабль, отправим его в путь, мы можем быть уверены, что он никогда до цели не долетит.

Дело в том, что реальная обстановка наверняка окажется отличной от той, какую мы предусмотрели в нашем сценарии. И ветер будет несколько отличен от расчетного, и температура воздуха будет не той, какую мы заложили в расчеты, и т. д. Одним словом, возникнет так много помех, что наше расчетное оптимальное управление будет вести аппарат совсем не по оптимальной траектории. Острословы говорят, что оптимальной траекторией называется та траектория, по которой ракета никогда не летает!

Есть ли выход из сложившейся ситуации? Да. На ракету надо поместить еще и автомат управления - специальный механизм, который, подобно автопилоту, будет реализовывать обратную связь. Он будет изменять нашу программу управления всякий раз, как только аппарат отклонится от программной расчетной траектории под действием не предусмотренных нами помех.

С проблемой организации обратной связи мы уже знакомились. На космическом аппарате такая связь должна состоять, во-первых, из программно-информационной системы, в память которой закладывается инфорнация о программной расчетной траектории. Снабжена она должна быть устройствами, способными измерять положения ракеты в пространстве и сопоставлять их с программной траекторией.

Во-вторых, в ней должен быть блок собственно обратной связи - механизм, перерабатывающий эту информацию и вырабатывающий команды об изменении углов, на которые должны повернуться газовые рули, о количестве подаваемого горючего и о других управляющих воздействиях. Надо заметить, что здесь идет речь лишь о корректирующих (малых) изменениях управляющих величин, поскольку основные уже заложены в расчетную программу.

Ну и, в-третьих, последний блок - силовое устройство, изменяющее положение рулей, всевозможных рычагов, заслонок и т. п.

Может показаться, что все это было и в любой системе регулирования. Однако здесь есть одна принципиальная разница. Чем проще программная траектория, тем легче построить систему обратной связи - автомат стабилизации. В "Теории регулирования" это было движение с постоянными характеристиками. Самолет какое-то время летит по прямой, с постоянной скоростью, на постоянной высоте. А ракета? Ее скорость, например, за короткое время изменяется от нуля до 8 километров в секунду. Поэтому требования к автомату, который ведет ракету по такой траектории, совсем иные, чем к автопилоту. Надо было создать новые методы его расчета методы расчета "ракетных" автопилотов. И сегодня мы научились это делать! И это свидетельствует о том, каким могучим инструментом управления обладает сегодня человек и как это много даст, если мы научимся применять эти знания и умения в других областях человеческой деятельности, для управления производством, в частности.

Так "Теория технического управления", сформировавшаяся в 50-е годы и включившая в себя "Теорию регулирования" как важнейшую составную часть, завоевала себе "место под солнцем"! В ней возникло много новых разделов, таких, например, как "Теория оптимального управления", существенно расширивших область применения средств управления. Одним из важнейших ее разделов стал метод Оптимальных программ, или Программный метод, на котором мы и остановимся несколько подробнее.

ПРОГРАММНЫЙ МЕТОД В ТЕОРИИ ТЕХНИЧЕСКОГО УПРАВЛЕНИЯ СИСТЕМАМИ

Сейчас Программный метод принято называть Программно-целевым. Наверное, такое уточнение особого смысла не имеет. Ведь говорить об управлении можно лишь тогда и только тогда, когда существует цель управления. И тем не менее такой лингвистический нонсенс, как мы увидим, имеет известное оправдание.

Начнем с того, что первый этап Программного метода - это назначение цели. Для технических систем, какими бы они ни были, цели назначаются извне: проектанты их не разрабатывают, а получают свыше, они им задаются. Космический аппарат можно вывести на круговую орбиту радиусом и в 200 километров и в 400, а на какую именно - руководители вывода сами не решают, а получают указание.

Создавая нефтегазовый комплекс, инженеры-проектировщики и управленцы получают готовое задание от вышестоящих организаций или заказчиков с точным указанием основных характеристик комплекса, сроков строительства и в течение скольких лет этот комплекс должен выдавать заданное количество продуктов нефти и газа. Откуда взялись эти задания и каким образом их удалось сформулировать, строителей и эксплуатационников не волнует: задания ими не разрабатываются, а им задаются! Если окажется, что поставленная цель недостижима - система не может обеспечить заданной добычи, - инженеры возвращают задание заказчику со своими комментариями. И только.

Итак, цель для технической системы задается "верхним уровнем", а весь механизм управления настроен на достижение этой цели. Можно сказать и так: цель является отправным пунктом планирования ресурсов! Или, другими словами, планирование производится от поставленной цели.

Сказанное может показаться тавтологией, повторением очевидных истин. Но в дальнейшем мы увидим, что эти совершенно очевидные истины служат источником далеко не благодушных дискуссий, а степень их понимания является главной оценкой интеллекта и профессиональной культуры управляющего, плановика, проектировщика!

Второй этап реализации Программного метода - это построение программы (или плана) такого распределения ресурсов управления, которое обеспечивает достижение цели. Если ресурса достаточно, например, если в баках ракеты достаточно горючего для вывода ее на орбиту, то цель может быть достигнута многими способами, и тогда возникает проблема оценки и сравнения этих способсв, И вот здесь-то и возникают многочисленные трудности, часто носящие совсем не технический характер.

Сегодня многие произносят слова "оптимальное решение", не всегда отдавая себе отчет в том, насколько условным может быть эта самая оптимальность. Разные дополнительные требования и условия так связывают проектировщика, что у него практически нет никаких возможностей сравнивать свое решение с чем-нибудь иным. Проектируя пассажирский самолет, он обязан обеспечить заданную посадочную скорость, заданные условия безопасности, заданную крейсерскую скорость, заданные экономические требования и многое другое. Эти ограничения так сужают его возможности, что он оказывается в положении человека, попавшего в узкий извилистый коридор: полметра влево стена, полметра вправо - тоже стена, и весь его выбор, вся оптимизация сводятся к тому, чтобы идти посредине этого коридора. И оказывается, что ему остается найти лишь одноединственное допустимое управляющее решение, которое обеспечивает достижение цели.