Но самой интересной была все же третья часть проекта - исследования кометы Галлея. Это небесное тело оставило глубокий след в памяти человечества, на протяжении двух тысячелетий около тридцати раз приблизившись к Солнцу. А начиная со смелой гипотезы, выдвинутой Э. Галлеем, оно было объектом систематических исследований в астрономии. Неумолимой логикой космической эры и кометы должны были стать объектами прямых исследований.

Космическим аппаратам впервые предстояло "увидеть" ядро кометы, неуловимое для наземных телескопов. Встреча "Веги-1 " с кометой произошла 6 марта, а "Веги-2" - 9 марта 1986 года. Они прошли на расстоянии 8 900 и 8 000 километров от ее ядра.

Проект был осуществлен при широкой международной коопера"

ции и с участием научных организаций многих стран-СССР, Австрии, НРБ, ВНР, ГДР, ПНР, Франции, ФРГ, ЧССР.

Чем объясняется, что комете Галлея было оказано такое внимание? Отвечу, что, кроме "Веги-1" и "Веги-2", к ней направились и другие космические аппараты - "Джотто", снаряженный Европейским космическим агентством, и два маленьких японских аппарата "Суисей" ("Комета") и "Сакигаке" ("Пионер").

Почему вообще вдруг так возрос интерес к кометным исследованиям? За последние 20 лет СССР и США направили к планетам более тридцати межпланетных автоматических станций. Их полеты расширили представления о планетах и их спутниках. Но пришла пора вспомнить и о других членах солнечной семьи, в частности о кометах.

Кометы - это гости, прибывшие с очень далеких окраин Солнечной системы. Предполагается, что около 100 миллиардов комет постоянно "прописано" в кометном облаке, окружающем Солнце на расстоянии, в десять тысяч раз большем, чем от Солнца до Земли. Судьба их различна. Большинство их остается там миллиарды лет, некоторые покидают Солнечную систему, а некоторые переходят в ее внутреннюю часть и даже попадают на орбиты с относительно небольшим периодом, подобно комете Галлея.

Кометное облако, по-видимому, образовалось вместе с Солнечной системой. В этом случае, исследуя вещество комет,. мы получим сведения о первичном материале, из которого 4,5 миллиарда лет назад сформировались планеты и спутники.

В свойствах комет много загадочного. Комета становится хорошо видимой, когда она приближается к Солнцу на расстояние, примерно втрое большее, чем радиус земной орбиты. Она вначале выглядит как круглое светлое пятнышко (голова или кома), потом в сторону от Солнца вытягивается хвост. В самом центре головы находится невидимое тело, которое называется ядром. В ядре сосредоточена почти вся масса кометы. Главной особенностью ядра является то, что оно содержит много "летучего", то есть легкоиспаряющегося вещества. Это обычно водный лед с вкраплением других молекул. Летучий материал перемешан с тугоплавкими частицами - силикатными, углистыми, металлическими. По мере приближения к Солнцу испарение льда идет все сильнее и сильнее, потоки газа покидают ядро, увлекая за собой пыль. Как будто бы многое ясно, но до сих пор не было ответа на главный вопрос какова физическая структура ядра кометы, единое ли это тело, рой из многих тел, связанных тяготением или просто летящих рядом. Ученые отдавали предпочтение первой модели, но не было оснований решительно отвергать и другие.

Поэтому самой важной задачей в проекте "Вега" было исследование физических характеристик ядра кометы.

"сметные ядра наблюдались ранее с Земли, но только как звездообразные объекты (далеко за орбитой Юпитера, когда активность отсутствует), да и таких наблюдений очень мало. В проекте "Вега" впервые ядро кометы исследовалось как пространственно разрешенный объект, определены его строение, размеры, инфракрасная температура, получены оценки его состава и характеристик поверхностного слоя.

Мы не имели и долго еще не будем иметь технической возможности совершить посадку аппарата, на ядро кометы.

Слишком велики скорости встречи - в случае кометы Галлея это 78 километров в секунду. Опасно и пролетать на слишком близком расстоянии, так как кометная "пыль" очень опасна для космического аппарата. Расстояние пролета (чуть меньше десяти тысяч километров) было выбрано с учетом существовавших ранее представлений о количественных характеристиках кометной пыли. Как же исследовать ядро с такого расстояния? Использовалось два подхода: во-первых, дистанционные измерения при помощи оптических приборов и, во-вторых, прямые измерения вещества (газа и пыли), покидающего ядро и пересекающего траекторию, по которой движется аппарат.

Оптические приборы были размещены на специальной платформе, которая поворачивалась во время полета и автоматически отслеживала направление на ядро. Эта платформа была разработана совместно с чехословацкими и советскими специалистами и изготовлена в ЧССР. Три научных эксперимента выполнялись при помощи приборов, установленных на платформе. Один из них это телевизионная съемка ядра. Специальный сложный телевизионный комплекс ТВС разработан для этого советскими, венгерскими и французскими специалистами. Различные его узлы изготовлены в СССР, ВНР и Франции.

Другой прибор - это инфракрасный спектрометр ИКС, при помощи которого одновременно проводилось два разных эксперимента - измерялись поток инфракрасного излучения от ядра (тем самым определялась температура его поверхности) и спектр инфракрасного излучения внутренних "околоядерных" частей комы на длинах волн от 2,5 до 12 микрометров с целью определения ее состава. Научное руководство этими исследованиями осуществляли советские и французские специалисты, прибор был изготовлен во Франции.

Третий инструмент на платформе - трехканальный спектрометр ТКС, который получал спектр излучения внутренней ко.лы на длинах волн от 2800 до 18 тысяч ангстрем-был разработан и изготовлен совместно специалистами СССР, Болгарии и Франции.

Итоги исследований ядра кометы Галлея, проведенных при помощи оптических приборов, можно сформулировать следующим образом. Это монолитное тело, вытянутое, форма неправильная, размеры 14 километров большой оси, около 7 километров в поперечнике. Каждые сутки его покидает несколько миллионов тонн водяного пара. Вычисления показывают, что такая "производительность" требует, чтобы испарение шло по всей поверхности. Этим свойством могла бы обладать Поверхность ледяного тела. Но вместе с тем приборы "Веги" установили, что она черная (отражательная способность менее 5 процентов) и горячая (примерно 100 тысяч градусов Цельсия). Эта, казалось бы, невероятная, противоречивая картина укладывается в простую модель, которую можно сравнить с мартовским сугробом: конгломератом льда и тугоплавких частиц, отдаленным от внешнего пространства слоем черного пористого вещества с низкой теплопроводностью.