Изменить стиль страницы

CoCreateInstance HRESULT

CoCreateInstance(REFCLSID rclsid, IUnknown *pUnkOuter, DWORD dwCtsCtx, REFIID riid, void **ppv)

{

MULTI_QI rgmqi[] = { &riid, 0, 0 };

HRESULT hr = CoCreateInstanceEx(rclsid, pUnkOuter, dwClsCtx, 0, 1, rgmqi);

*ppv = rgmqi[0].pItf;

return hr;

}

Хотя возможно выполнить запрос на удаленную активацию с использованием CoCreateInstance, отсутствие параметра COSERVERINFO не позволяет вызывающему объекту задать явное имя хоста. Вместо этого вызов CoCreateInstance и задание только флага CLSCTX_REMOTE_SERVER предписывает SCM использовать конфигурационную информацию каждого CLSID для выбора хост-машины, которая будет использоваться для активации объекта.

Сущность технологии СОМ. Библиотека программиста fig3_4.jpg

Рисунок 3.4 показывает, как параметры CoCreateInstanceEx преобразуются в параметры CoGetClassObject и IClassFactory::CreateInstance. Вопреки распространенному заблуждению, CoCreateInstanceEx не осуществляет внутренний вызов CoGetClassObject. Хотя между двумя этими методиками нет логических различий, реализация CoCreateInstanceEx будет более эффективной при создании одного экземпляра, так как в этом случае не будет лишних вызовов клиент-сервер, которые могли бы понадобиться, если бы была использована CoGetClassObject. Если, однако, будет создаваться большое число экземпляров, то клиент может кэшировать указатель объекта класса и просто вызвать IClassFactory::CreateInstance несколько раз. Поскольку IClassFactory::CreateInstance является всего лишь вызовом метода и не идет через SCM, он отчасти быстрее, чем вызов CoCreateInstanceEx. Порог, за которым становится более эффективным кэшировать объект класса и обходить CoCreateInstanceEx, будет изменяться в зависимости от эффективности IPC и RPC на используемых хост-машинах и сети.

Снова интерфейс и реализация

В предыдущих примерах активации со стороны клиента осуществлялись явные вызовы API-функций СОМ для активации. Часто может понадобиться много шагов для корректной связи с требуемым объектом (например, создать один тип объекта, затем запросить его для ссылки на другой объект, основанный на некоторой информации в запросе). Чтобы избавить клиентов от заботы об алгоритмах по поиску объектов или их созданию, СОМ поддерживает стандартный механизм назначения произвольных имен объектам, на которые они ссылаются. Этот механизм основан на использовании локаторных объектов (locator objects), которые инкапсулируют свой алгоритм связи, скрывая его за стандартным постоянным интерфейсом. Эти локаторы объектов формально называются моникерами и являются просто СОМ-объектами, экспортирующими интерфейс IMoniker. Интерфейс IMoniker является одним из наиболее сложных интерфейсов СОМ; тем не менее, он объявляет один метод, чрезвычайно важный для данной дискуссии, а именно BindToObject:

interface IMoniker : IPersistStream { HRESULT BindToObject([in] IBindCtx *pbc, [in, unique] IMoniker *pmkToLeft, [in] REFIID riid, [out, iid_is(riid)] void **ppv);

// remaining methods deleted for clarity

// остальные методы удалены для ясности

}

Напоминаем, что определения интерфейса являются абстрактными и достаточно неопределенными для того, чтобы допустить множество интерпретаций точной семантики каждого метода. Абстрактную семантику BindToObject можно сформулировать так: «запусти свой алгоритм поиска или создания объекта и возврати типизированный интерфейсный указатель на этот объект, когда он создан или найден». Когда клиент вызывает ВindToObject на моникер, у него нет точных представлений о том, как именно моникер превратит свою внутреннюю структуру в указатель на объект. Имея три различных моникера, можно использовать три совершенно различных алгоритма. Такая полиморфность поведения и делает идиому моникера столь действенной.

Клиенты получают моникеры одним из следующих способов. Клиент может получить моникер от какого-нибудь внешнего агента, такого, как результат вызова метода на некоем уже существующем объекте. Клиенты могут вызвать явную API-функцию, которая создает моникер определенного типа. Клиенты могут просто иметь строку текста, являющуюся «строкоподобным» состоянием моникера. Последний случай является наиболее интересным, так как он позволяет приложениям загружать и сохранять «имена объектов», используя внешние конфигурационные файлы или системный реестр, в текстовом виде (text-based). Если эта методика открыто документирована как часть конфигурационного состояния приложения, системные администраторы или опытные пользователи смогут переконфигурировать свое приложение, чтобы использовать альтернативную технологию для поиска объектов, которая могла быть или не быть предусмотрена разработчиком исходного приложения. Например, моникер, поддерживающий выравнивание нагрузки, может быть переконфигурирован для проведения иной стратегии выбора хост-машин простым изменением текстовой версии моникера, которая хранится в конфигурационном файле приложения.

Текстовое представление моникера формально называется отображаемым именем (display name). Интерфейс IMoniker объявляет метод GetDisplayName, который позволяет клиентам запрашивать моникер о его отображаемом имени. Более интересная задача – превратить произвольные отображаемые имена в моникеры. Эта задача довольно проблематичная, так как клиент не может просто сказать, какому виду моникера соответствует отображаемое имя. Такую работу выполняет MkParseDisplayName – вероятно, наиболее важная API-функция во всем СОМ.

MkParseDisplayName берет произвольное отображаемое имя и превращает его в моникер:

HRESULT MkParseDisplayName(

[in] IBindCtx *pbc,

// binding Info – информация о связывании

[in, string] const OLECHAR *pwszName,

// object name – имя объекта

[out] ULONG *pcchEaten,

// progress on error – сообщение об ошибке

[out] IMoniker **ppmk);

// the resultant moniker – результирующий моникер

Пространство имен моникеров является расширяемым, чтобы поддерживать новые типы моникеров. Синтаксический анализатор высокого уровня, использованный в MkParseDisplayName, исследует префикс отображаемого имени и пытается сопоставить его с зарегистрированным префиксом ProgID, который определяет, какому типу моникера соответствует данное отображаемое имя. Если префиксы совпадают, то создается новый моникер соответствующего типа и ему присваивается отображаемое имя для дальнейшего анализа. Поскольку моникеры имеют иерархическую структуру и могут быть композитными, то результирующий моникер в действительности может содержать два и более моникеров. Клиент может не заботиться об этой детали реализации. Клиент попросту использует для нахождения искомого объекта результирующий интерфейсный указатель IMoniker, который может указывать, а может не указывать на композитный моникер (composite moniker).

Напомним, что начальная точка входа в класс СОМ проходит через объект этого класса. Чтобы связаться с объектом класса, необходим моникер классового типа (Class Moniker). Это моникеры встроенного типа, предоставляемые моделью СОМ. Классовые моникеры поддерживают CLSID в качестве своего начального состояния и могут быть созданы либо с помощью явной API-функции СОМ CreateClassMoniker.

HRESULT CreateClassMoniker([in] REFCLSID rclsid, [out] IMoniker **ppmk);

либо путем передачи отображаемого имени от Class Moniker в MkParseDisplayName[1]:

вернуться

1 Хотя использование MkParseDisplayName будет несколько менее эффективным, оно обладает гораздо большей гибкостью. Как отмечалось ранее, отображаемое имя может быть прочитано из файла или даже из пользовательского интерфейса. Отличным примером такого приложения является Internet Explorer фирмы Microsoft, так как он позволяет пользователям набирать произвольные имена объектов (URL), которые превращаются в моникеры (с использованием расширенной API-функции MkParseDisplayNameEx).